Timing of heparin and perfusion temperature during procurement of organs with extracorporeal support in donors after circulatory determination of death.

Division of Transplantation, General Surgery Department, University of Michigan Health System, Ann Arbor, Michigan, USA.
ASAIO journal (American Society for Artificial Internal Organs: 1992) (Impact Factor: 1.39). 07/2011; 57(5):368-74. DOI: 10.1097/MAT.0b013e318227f8a2
Source: PubMed

ABSTRACT Despite successful resuscitation of donors after circulatory determination of death (DCD) with extracorporeal support (ECS), the technique is limited by ethical concerns about donor management (heparinization) and the complexity to operate the ECS circuit. This work studies different timing of heparin administration and the effects of ECS-perfusion temperature. Cardiac arrest (CA) was induced in swine. Heparin studies, three groups: 1) PRE5, heparin 5 minutes before CA; 2) POST5, heparin 5 minutes after CA, plus 2 minutes external chest compressions; and 3) POST30, heparin with the initiation of ECS after 30 minutes CA. Perfusion temperature study, two groups: 1) normothermic, ECS-38.5°C after 30 minutes CA and 2) room temperature, ECS-25.5°C for the first 90 minutes, followed by ECS-38.5°C. Heparin studies: ECS target flows (>50 ml/kg/min) were not achieved in the POST30 group, affecting local organ perfusion as observed with poor bile (<4 ml/min) and urine output (<25 ml/min), when compared with the other groups (normal values). Temperature study: In both groups, ECS target flows were reached, and urine/bile output was restored. Heparinization 5 minutes after CA is equivalent to premortem heparinization in this ECS-DCD model. Heparinization after CA could reduce ethical concerns. Donors after circulatory determination of death were successfully resuscitated at both temperatures, suggesting that the heat exchanger/water heater can be removed to simplify the ECS circuit.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Organ shortage leads to usage of kidneys from donors after sudden cardiac death, or uncontrolled donors (UDCD). Ischemic injury due to cessation of circulation remains a crucial problem that limits adoption of UDCD. Our clinical investigation was to determine the applicability of kidneys obtained from UDCD and resuscitated by extracorporeal perfusion in situ after 60 minutes of asystole. In 2009-2011, organ procurement service of St. Petersburg, obtained kidneys from 22 UDCD with critically expanded warm ischemic time (WIT). No patients were considered as potential organ donors initially. All donors died after sudden irreversible cardiac arrest. Mean WIT was 61.4±4.5 minutes. For kidney resuscitation, the subnormothermic extracorporeal abdominal perfusion with thrombolytics and leukocyte depletion was employed. Grafts were transplanted into 44 recipients. The outcomes of transplantation of resuscitated kidneys were compared to outcomes of 87 KTx from 74 brain death donors (BDDs). Immediate functioning of kidney grafts was observed in 21 of the 44 recipients, with no cases of primary non function. By the end of the first post-transplant year there was an acute rejection rate of 9.1% (4 episodes of rejection) in the UDCD group versus 14.2% (13 episodes of rejection) in the BDD group. The actual 1-year graft survival rate was 95.5% (n = 42) in UDCD group, and 94.6% (n = 87) in BDD group. Creatinine levels at the end of the first year were 0.116±0.008 and 0.115±0.004 mmol/l in UDCD and BDD groups, respectively. UDCD kidneys with critically expanded WIT could be succefully used for transplantation if in situ organ "resuscitation" perfusion is included into procurement protocol. The results of 1-year follow-up meet the generally accepted criteria for graft survival and function. In situ reperfusion may exert a therapeutic effect on grafts before procurement. This approach could substantially expand the organ donors' pool.
    PLoS ONE 01/2013; 8(5):e64209. · 3.53 Impact Factor


Available from
May 23, 2014