Article

The role of drinking water in the transmission of antimicrobial-resistant E. coli

Mount Sinai Hospital, Toronto, ON, Canada.
Epidemiology and Infection (Impact Factor: 2.49). 06/2011; 140(4):633-42. DOI: 10.1017/S0950268811001038
Source: PubMed

ABSTRACT To determine whether drinking water contaminated with antimicrobial-resistant E. coli is associated with the carriage of resistant E. coli, selected households sending water samples to Ontario and Alberta laboratories in 2005-2006 were asked to participate in a cross-sectional study. Household members aged ≥12 years were asked to complete a questionnaire and to submit a rectal swab. In 878 individuals, 41% carried a resistant strain of E. coli and 28% carried a multidrug-resistant strain. The risk of carriage of resistant E. coli was 1·26 times higher for users of water contaminated with resistant E. coli. Other risk factors included international travel [prevalence ratio (PR) 1·33], having a child in nappies (PR 1·33), being male (PR 1·33), and frequent handling of raw red meats (PR 1·10). Protecting private water sources (e.g. by improving systems to test and treat them) may help slow the emergence of antimicrobial resistance in E. coli.

Download full-text

Full-text

Available from: Susan J Bondy, Jun 30, 2015
0 Followers
 · 
152 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Infections caused by antibiotic resistant bacteria (ARB) are associated with poor health outcomes and are recognised globally as a serious health problem. Much research has been conducted on the transmission of ARB to humans. Yet the role the natural environment plays in the spread of ARB and antibiotic resistance genes is not well understood. Antibiotic resistant bacteria have been detected in natural aquatic environments, and ingestion of seawater during water sports is one route by which many people could be directly exposed. The aim was to estimate the prevalence of resistance to one clinically important class of antibiotics (third-generation cephalosporins (3GCs)) amongst Escherichia coli in coastal surface waters in England and Wales. Prevalence data was used to quantify ingestion of 3GC-resistant E. coli (3GCREC) by people participating in water sports in designated coastal bathing waters. A further aim was to use this value to derive a population-level estimate of exposure to these bacteria during recreational use of coastal waters in 2012. The prevalence of 3GC-resistance amongst E. coli isolated from coastal surface waters was estimated using culture-based methods. This was combined with the density of E. coli reported in designated coastal bathing waters along with estimations of the volumes of water ingested during various water sports reported in the literature to calculate the mean number of 3GCREC ingested during different water sports. 0.12% of E. coli isolated from surface waters were resistant to 3GCs. This value was used to estimate that in England and Wales over 6.3 million water sport sessions occurred in 2012 that resulted in the ingestion of at least one 3GCREC. Despite the low prevalence of resistance to 3GCs amongst E. coli in surface waters, there is an identifiable human exposure risk for water users, which varies with the type of water sport undertaken. The relative importance of this exposure is likely to be greater in areas where a large proportion of the population enjoys water sports. Millions of water sport sessions occurred in 2012 that were likely to have resulted in people ingesting E. coli resistant to a single class of antibiotics (3GCs). However, this is expected to be a significant underestimate of recreational exposure to all ARB in seawater. This is the first study to use volumes of water ingested during different water sports to estimate human exposure to ARB. Further work needs to be done to elucidate the health implications and clinical relevance of exposure to ARB in both marine and fresh waters in order to fully understand the risk to public health.
    Environment International 03/2015; · 5.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Infections caused by antibiotic resistant bacteria (ARB) are associated with poor health outcomes and are recognised globally as a serious health problem. Much research has been conducted on the transmission of ARB to humans. Yet the role the natural environment plays in the spread of ARB and antibiotic resistance genes is not well understood. Antibiotic resistant bacteria have been detected in natural aquatic environments, and ingestion of seawater during water sports is one route by which many people could be directly exposed. The aim was to estimate the prevalence of resistance to one clinically important class of antibiotics (third-generation cephalosporins (3GCs)) amongst Escherichia coli in coastal surface waters in England and Wales. Prevalence data was used to quantify ingestion of 3GC-resistant E. coli (3GCREC) by people participating in water sports in designated coastal bathing waters. A further aim was to use this value to derive a population-level estimate of exposure to these bacteria during recreational use of coastal waters in 2012. The prevalence of 3GC-resistance amongst E. coli isolated from coastal surface waters was estimated using culture-based methods. This was combined with the density of E. coli reported in designated coastal bathing waters along with estimations of the volumes of water ingested during various water sports reported in the literature to calculate the mean number of 3GCREC ingested during different water sports. 0.12% of E. coli isolated from surface waters were resistant to 3GCs. This value was used to estimate that in England and Wales over 6.3 million water sport sessions occurred in 2012 that were likely to have resulted in the ingestion of at least one 3GCREC. Despite the low prevalence of resistance to 3GCs amongst E. coli in surface waters, there is an identifiable human exposure risk for water users, which varies with the type of water sport undertaken. The relative importance of this exposure is likely to be greater in areas where a large proportion of the population enjoys water sports. Millions of water sport sessions occurred in 2012 that were likely to have resulted in people ingesting E. coli resistant to a single class of antibiotics (3GCs). However, this is expected to be a significant underestimate of recreational exposure to all ARB in seawater. This is the first study to use volumes of water ingested using different water sports to estimate human exposure to ARB. Further work needs to be done to elucidate the health implications and clinical relevance of exposure to ARB in both marine and fresh waters in order to fully understand the risk to public health.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biofilms are the predominant mode of microbial growth in drinking water systems. A dynamic exchange of individuals occurs between the attached and planktonic populations, while lateral gene transfer mediates genetic exchange in these bacterial communities. Integrons are important vectors for the spread of antimicrobial resistance. The presence of class 1 integrons (intI1, qac and sul genes) was assessed in biofilms occurring throughout the drinking water treatment process. Isolates from general and specific culture media, covering a wide range of environmental bacteria, fecal indicators and opportunistic pathogens were tested. From 96 isolates tested, 9.37% were found to possess genetic determinants of putative antimicrobial resistance, and these occurred in both Gram-positive and Gram-negative bacteria. Class 1 integron integrase gene was present in 8.33% of bacteria, all positive for the qacEΔ1 gene. The sul1 gene was present in 3.12% of total isolates, representing 37.5% of the class 1 integron positive cells. The present study shows that biofilm communities in a drinking water treatment plant are a reservoir of class 1 integrons, mainly in bacteria that may be associated with microbiological contamination. Eight out of nine integron bearing strains (88.8%) were identified based on 16S rRNA gene sequencing as either enteric bacteria or species that may be connected to animal and anthropogenic disturbance.
    Science of The Total Environment 12/2012; 443C:932-938. DOI:10.1016/j.scitotenv.2012.11.068 · 3.16 Impact Factor