Article

Distinct periods of developmental sensitivity to the effects of 3,4-(±)-methylenedioxymethamphetamine (MDMA) on behaviour and monoamines in rats.

Division of Neurology, Cincinnati Children's Research Foundation and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
The International Journal of Neuropsychopharmacology (Impact Factor: 5.64). 06/2011; 15(6):811-24. DOI: 10.1017/S1461145711000952
Source: PubMed

ABSTRACT Previous findings showed allocentric and egocentric learning deficits in rats after MDMA treatment from postnatal days (PD) 11-20 but not after treatment from PD 1-10. Shorter treatment periods (PD 1-5, 6-10, 11-15, or 16-20) resulted in allocentric learning deficits averaged across intervals but not for any interval individually and no egocentric learning deficits individually or collectively. Whether this difference was attributable to treatment length or age at the start of treatment was unclear. In the present experiment rat litters were treated on PD 1-10, 6-15, or 11-20 with 0, 10, or 15 mg/kg MDMA q.i.d. at 2-h intervals. Two male/female pairs/litter received each treatment. One pair/litter received acoustic startle with prepulse inhibition, straight channel swimming, Cincinnati water maze (CWM), and conditioned fear in a latent inhibition paradigm. The other pair/litter received locomotor activity, straight channel swimming, Morris water maze (MWM), and locomotor activity retest with MK-801 challenge. MDMA impaired CWM learning following PD 6-15 or 11-20 exposure. In MWM acquisition, all MDMA-treated groups showed impairment. During reversal and shift, the PD 6-15 and PD 11-20 MDMA-treated groups were significantly impaired. Reductions in locomotor activity were most evident after PD 6-15 treatment while increases in acoustic startle were most evident after PD 1-10 treatment. After MK-801 challenge, MDMA-treated offspring showed less locomotion compared to controls. Region-specific changes in brain monoamines were also observed but were not significantly correlated with behavioural changes. The results show that PD 11-20 exposure to MDMA caused the largest long-term cognitive deficits followed by PD 6-15 exposure with PD 1-10 exposure least affected. Other effects, such as those upon MK-801-stimulated locomotion showed greatest effects after PD 1-10 MDMA exposure. Hence, each effect has a different window of developmental susceptibility.

0 Bookmarks
 · 
102 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Addictive drugs produce forms of structural plasticity in the nucleus accumbens and prefrontal cortex. The aim of this study was to investigate the impact of chronic MDMA exposure on pyramidal neurons in the CA1 region of hippocampus and drug-related spatial learning and memory changes. Adolescent rats were exposed to saline or MDMA in a regime that mimicked chronic administration. One week later, when acquisition or reference memory was evaluated in a standard Morris water maze (MWM), no differences were obtained between groups. However, MDMA-exposed animals performed better when the MWM was implemented under more difficult conditions. Animals of MDMA group were less anxious and were more prepared to take risks, as in the open field test they ventured more frequently into the central area. We have demonstrated that MDMA caused an increase in brain-derived neurotrophic factor (BDNF) expression. When spine density was evaluated, MDMA-treated rats presented a reduced density when compared with saline, but overall, training increased the total number of spines, concluding that in MDMA-group, training prevented a reduction in spine density or induced its recovery. This study provides support for the conclusion that binge administration of MDMA, known to be associated to neurotoxic damage of hippocampal serotonergic terminals, increases BDNF expression and stimulates synaptic plasticity when associated with training. In these conditions, adolescent rats perform better in a more difficult water maze task under restricted conditions of learning and memory. The effect on this task could be modulated by other behavioural changes provoked by MDMA.
    Psychopharmacology 10/2013; · 3.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cognitive effects of MDMA ('Ecstasy') are controversial, particularly in the case of acute administration of low doses. Latent inhibition (LI) refers to the reduction in conditioning to a stimulus that has received non-reinforced pre-exposure, an effect typically abolished by amphetamines and enhanced by antipsychotics. LI enhancement has also been shown using the 5-HT reuptake blocker sertraline. In the present study, the effects of MDMA (6 mg/kg, known to increase 5-HT release) were tested using 10 and 40 pre-exposures to produce weak and strong LI in controls, respectively. MDMA (injected twice, prior to pre-exposure and conditioning) significantly enhanced LI in that the effect was clearly demonstrated after only 10 pre-exposures, when it was absent in the saline controls. On its own such a profile of action would be consistent with a procognitive effect of MDMA mediated by increased availability of 5-HT. However, paradoxically the same MDMA treatment reduced LI in the 40 pre-exposures condition. This component of action is likely attributable to MDMA's actions on catecholaminergic systems and is consistent with other evidence of its adverse effects. Moreover, there were small but significant reductions in 5-HT in medial prefrontal cortex (mPFC) and amygdala assayed 7 days post MDMA administration (2 x 6 mg/kg, 24 hrs apart). [206].
    Neuropharmacology 11/2012; · 4.82 Impact Factor