Human placenta-derived adherent cells prevent bone loss, stimulate bone formation, and suppress growth of multiple myeloma in bone

Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
Stem Cells (Impact Factor: 7.7). 02/2011; 29(2):263-73. DOI: 10.1002/stem.572
Source: PubMed

ABSTRACT Human placenta has emerged as a valuable source of transplantable cells of mesenchymal and hematopoietic origin for multiple cytotherapeutic purposes, including enhanced engraftment of hematopoietic stem cells, modulation of inflammation, bone repair, and cancer. Placenta-derived adherent cells (PDACs) are mesenchymal-like stem cells isolated from postpartum human placenta. Multiple myeloma is closely associated with induction of bone disease and large lytic lesions, which are often not repaired and are usually the sites of relapses. We evaluated the antimyeloma therapeutic potential, in vivo survival, and trafficking of PDACs in the severe combined immunodeficiency (SCID)-rab model of medullary myeloma-associated bone loss. Intrabone injection of PDACs into nonmyelomatous and myelomatous implanted bone in SCID-rab mice promoted bone formation by stimulating endogenous osteoblastogenesis, and most PDACs disappeared from bone within 4 weeks. PDACs inhibitory effects on myeloma bone disease and tumor growth were dose-dependent and comparable with those of fetal human mesenchymal stem cells (MSCs). Intrabone, but not subcutaneous, engraftment of PDACs inhibited bone disease and tumor growth in SCID-rab mice. Intratumor injection of PDACs had no effect on subcutaneous growth of myeloma cells. A small number of intravenously injected PDACs trafficked into myelomatous bone. Myeloma cell growth rate in vitro was lower in coculture with PDACs than with MSCs from human fetal bone or myeloma patients. PDACs also promoted apoptosis in osteoclast precursors and inhibited their differentiation. This study suggests that altering the bone marrow microenvironment with PDAC cytotherapy attenuates growth of myeloma and that PDAC cytotherapy is a promising therapeutic approach for myeloma osteolysis.

1 Follower
  • Source
    • "Autologous BM-MSC were also delivered in a fibrin spray to accelerate wound healing in patients with acute wounds including skin cancer surgery-induced lesions [24], and our group has recently validated in vitro an analogous strategy using unpassaged adipose-derived MSC [25]. Intrabone and systemic delivery of MSC has been tested in a multiple myeloma animal model for simultaneous inhibition of tumor growth and regeneration of bone lesions [26]. Another MSC-based approach currently under consideration for regenerative therapy after cancer is cell-assisted soft tissue reconstruction for patients treated for head and neck or breast cancer [7]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer treatment generally relies on tumor ablative techniques that can lead to major functional or disfiguring defects. These post-therapy impairments require the development of safe regenerative therapy strategies during cancer remission. Many current tissue repair approaches exploit paracrine (immunomodulatory, pro-angiogenic, anti-apoptotic and pro-survival effects) or restoring (functional or structural tissue repair) properties of mesenchymal stem/stromal cells (MSC). Yet, a major concern in the application of regenerative therapies during cancer remission remains the possible triggering of cancer recurrence. Tumor relapse implies the persistence of rare subsets of tumor-initiating cancer cells which can escape anti-cancer therapies and lie dormant in specific niches awaiting reactivation via unknown stimuli. Many of the components required for successful regenerative therapy (revascularization, immunosuppression, cellular homing, tissue growth promotion) are also critical for tumor progression and metastasis. While bidirectional crosstalk between tumorigenic cells (especially aggressive cancer cell lines) and MSC (including tumor stroma-resident populations) has been demonstrated in a variety of cancers, the effects of local or systemic MSC delivery for regenerative purposes on persisting cancer cells during remission remain controversial. Both pro- and anti-tumorigenic effects of MSC have been reported in the literature. Our own data using breast cancer clinical isolates have suggested that dormant-like tumor-initiating cells do not respond to MSC signals, unlike actively dividing cancer cells which benefited from the presence of supportive MSC. The secretome of MSC isolated from various tissues may partially diverge, but it includes a core of cytokines (i.e. CCL2, CCL5, IL-6, TGFβ, VEGF), which have been implicated in tumor growth and/or metastasis. This article reviews published models for studying interactions between MSC and cancer cells with a focus on the impact of MSC secretome on cancer cell activity, and discusses the implications for regenerative therapy after cancer.
    Biochimie 06/2013; 95(12). DOI:10.1016/j.biochi.2013.05.010 · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The development of injectable and biocompatible vehicles for delivery, retention, growth, and differentiation of stem cells is of paramount importance for regenerative medicine. For cell therapy and the development of clinical combination products, we created a hyaluronan (HA)-based synthetic extracellular matrix (sECM) that provides highly reproducible, manufacturable, approvable, and affordable biomaterials. The composition of the sECM can be customized for use with progenitor and mature cell populations obtained from skin, fat, liver, heart, muscle, bone, cartilage, nerves, and other tissues. This overview describes the design criteria for "living" HA derivatives, and the many uses of this in situ crosslinkable HA-based sECM hydrogel for three-dimensional (3-D) culture of cells in vitro and translational use in vivo. Recent advances allow rapid expansion and recovery of cells in 3-D, and the bioprinting of engineered tissue constructs. The uses of HA-derived sECMs for cell and molecule delivery in vivo will be reviewed, including applications in cancer biology and tumor imaging.
    Journal of Controlled Release 04/2011; 155(2):193-9. DOI:10.1016/j.jconrel.2011.04.007 · 7.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In vitro, in vivo animal, and human clinical data show a broad field of application for mesenchymal stem cells (MSCs). There is overwhelming evidence of the usefulness of MSCs in regenerative medicine, tissue engineering, and immune therapy. At present, there are a significant number of clinical trials exploring the use of MSCs for the treatment of various diseases, including myocardial infarction and stroke, in which oxygen suppression causes widespread cell death, and others with clear involvement of the immune system, such as graft-versus-host disease, Crohn's disease, and diabetes. With no less impact, MSCs have been used as cell therapy to treat defects in bone and cartilage and to help in wound healing, or in combination with biomaterials in tissue engineering development. Among the MSCs, allogeneic MSCs have been associated with a regenerative capacity due to their unique immune modulatory properties. Their immunosuppressive capability without evidence of immunosuppressive toxicity at a global level define their application in the treatment of diseases with a pathogenesis involving uncontrolled activity of the immune system. Until now, the limitation in the number of totally characterized autologous MSCs available represents a major obstacle to their use for adult stem cell therapy. The use of premanufactured allogeneic MSCs from controlled donors under optimal conditions and their application in highly standardized clinical trials would lead to a better understanding of their real applications and reduce the time to clinical translation.
    Stem Cells and Cloning: Advances and Applications 11/2011; 4:61-72. DOI:10.2147/SCCAA.S11991
Show more


Available from
Jun 4, 2014