MicroRNA-146a inhibits glioma development by targeting Notch1.

Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.
Molecular and Cellular Biology (Impact Factor: 5.04). 09/2011; 31(17):3584-92. DOI: 10.1128/MCB.05821-11
Source: PubMed

ABSTRACT Dysregulated epidermal growth factor receptor (EGFR) signaling through either genomic amplification or dominant-active mutation (EGFR(vIII)), in combination with the dual inactivation of INK4A/ARF and PTEN, is a leading cause of gliomagenesis. Our global expression analysis for microRNAs revealed that EGFR activation induces miR-146a expression, which is further potentiated by inactivation of PTEN. Unexpectedly, overexpression of miR-146a attenuates the proliferation, migration, and tumorigenic potential of Ink4a/Arf(-/-) Pten(-/-) Egfr(vIII) murine astrocytes. Its ectopic expression also inhibits the glioma development of a human glioblastoma cell line in an orthotopic xenograft model. Such an inhibitory function of miR-146a on gliomas is largely through downregulation of Notch1, which plays a key role in neural stem cell maintenance and is a direct target of miR-146a. Accordingly, miR-146a modulates neural stem cell proliferation and differentiation and reduces the formation and migration of glioma stem-like cells. Conversely, knockdown of miR-146a by microRNA sponge upregulates Notch1 and promotes tumorigenesis of malignant astrocytes. These findings indicate that, in response to oncogenic cues, miR-146a is induced as a negative-feedback mechanism to restrict tumor growth by repressing Notch1. Our results provide novel insights into the signaling pathways that link neural stem cells to gliomagenesis and may lead to new strategies for treating brain tumors.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tight control of T follicular helper (Tfh) cells is required for optimal maturation of the germinal centre (GC) response. The molecular mechanisms controlling Tfh-cell differentiation remain incompletely understood. Here we show that microRNA-146a (miR-146a) is highly expressed in Tfh cells and peak miR-146a expression marks the decline of the Tfh response after immunization. Loss of miR-146a causes cell-intrinsic accumulation of Tfh and GC B cells. MiR-146a represses several Tfh-cell-expressed messenger RNAs, and of these, ICOS is the most strongly cell autonomously upregulated target in miR-146a-deficient T cells. In addition, miR-146a deficiency leads to increased ICOSL expression on GC B cells and antigen-presenting cells. Partial blockade of ICOS signalling, either by injections of low dose of ICOSL blocking antibody or by halving the gene dose of Icos in miR-146a-deficient T cells, prevents the Tfh and GC B-cell accumulation. Collectively, miR-146a emerges as a post-transcriptional brake to limit Tfh cells and GC responses.
    Nature Communications 01/2015; 6:6436. DOI:10.1038/ncomms7436 · 10.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sphere formation, one method for identifying self-renewal ability, has been used to report that cancer stem-like cells exist in rat C6 glioma cells. Recent studies suggested that cancer stem-like cells share the stem cell properties of self-renewal and multipotent ability of neural stem cells and might be regulated by microRNAs (miRNAs). However, the mechanism of miRNA involvement in the sphere formation and neural differentiation abilities of cancer stem-like cells is poorly understood. We found that miRNA-30c could assist in sphere formation of C6 cells under defined conditions in neural stem cell medium DMEM/F12-bFGF-EGF-B27. Moreover, overexpression of miRNA-30c might reduce 3-isobutyl-1-methylxanthine (IBMX)-induced neural differentiation, as the expression of neural markers, especially glial fibrillary acidic protein (GFAP), decreased. Further experiments revealed that miRNA-30c inhibited the IBMX-induced astrocyte differentiation via targeting the upstream genes and inactivating phosphorylation of STAT3 of the JAK-STAT3 pathway. Subsequently, the expression of GFAP was reduced and the number of astrocyte differentiation from C6 cells decreased. Our findings suggest that miRNA-30c could play a regulatory role in self-renewal and neural differentiation in C6 glioma cells. Copyright © 2015. Published by Elsevier B.V.
    Stem Cell Research 02/2015; 55(2). DOI:10.1016/j.scr.2015.01.008 · 3.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Studies have demonstrated that miRNAs contribute to the maintenance and phenotype of in several cancer types. This review will focus on the roles of a few well studied miRNAs in cancer stem-like cells of glioblastoma.
    Archives of Pharmacal Research 02/2015; DOI:10.1007/s12272-015-0574-y · 1.54 Impact Factor

Full-text (2 Sources)

Available from
Jun 4, 2014