Partial Breast Irradiation Delivered With Proton Beam: Results of a Phase II Trial

Department of Radiation Medicine, Loma Linda University Medical Center, 11234 Anderson Street, Loma Linda, CA 92354, USA.
Clinical Breast Cancer (Impact Factor: 2.11). 08/2011; 11(4):241-5. DOI: 10.1016/j.clbc.2011.03.023
Source: PubMed


A phase II trial sought to determine the safety and efficacy of proton beam irradiation to deliver partial breast radiotherapy after lumpectomy for early-stage breast cancer.
Eligible patients included women with invasive nonlobular carcinoma ≤ 3 cm. Surgical therapy included lumpectomy with negative margins and negative axillary lymph nodes on sampling. Postoperative proton radiotherapy to the surgical bed with an additional 1-cm margin was delivered by 40 Gy in 10 fractions over a 2-week course. Patients received systemic therapy as recommended after proton treatment. Patients had clinical evaluations every 6 months and annual mammograms.
Fifty patients were enrolled; median follow-up was 48 months. All patients completed the prescribed treatment. Acute toxicities were limited to mild radiation dermatitis. Late skin toxicities included 3 grade 1 telangiectasias. There were no posttreatment infections or ulcerations and no cases of fat necrosis, rib fractures, radiation pneumonitis, or cardiac events. Actuarial 5-year overall survival and disease-free survival rates were 96% and 92%, respectively. No local failures occurred. Ipsilateral breast cancer developed in 1 patient 5.5 years after treatment. Dose-volume histogram analysis showed near-complete elimination of dose to the contralateral breast, lung, and heart.
Proton partial breast radiotherapy appeared to be a feasible method of treatment and provided excellent disease control within the ipsilateral breast. Treatment-related toxicity was minimal and no technical limitations prevented treatment delivery. The incidence of posttreatment complications may be less than that reported when using more invasive techniques; comparative trials should be considered.

8 Reads
  • Source
    • "Current clinical trials are evaluating the safety, efficacy, and cosmetic outcome of partial breast irradiation compared with whole breast irradiation. Should these trials document a meaningful clinical advantage to partial breast irradiation, Taghian et al. [48], Kozak et al. [49,51], and Bush et al. [52,53] have demonstrated that partial breast irradiation using proton beam therapy is safe, effective, and technically feasible; provides excellent tumor coverage; and improves healthy tissue (heart and lung) sparing, including nontarget breast tissue, when compared with partial breast irradiation using conventional x-rays and electron beams. In addition, it is less expensive than intracavitary and interstitial brachytherapy. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Over the past 20 years, several proton beam treatment programs have been implemented throughout the United States. Increasingly, the number of new programs under development is growing. Proton beam therapy has the potential for improving tumor control and survival through dose escalation. It also has potential for reducing harm to normal organs through dose reduction. However, proton beam therapy is more costly than conventional x-ray therapy. This increased cost may be offset by improved function, improved quality of life, and reduced costs related to treating the late effects of therapy. Clinical research opportunities are abundant to determine which patients will gain the most benefit from proton beam therapy. We review the clinical case for proton beam therapy. Summary sentence Proton beam therapy is a technically advanced and promising form of radiation therapy.
    Radiation Oncology 10/2012; 7(1):174. DOI:10.1186/1748-717X-7-174 · 2.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ongoing clinical trials aim to improve local control and overall survival rates by intensification of therapy regimen for patients with locally advanced rectal cancer. It is well known that whenever treatment is intensified, risk of therapy-related toxicity rises. An irradiation with protons could possibly present an approach to solve this dilemma by lowering the exposure to the organs-at-risk (OAR) without compromising tumor response. Twenty five consecutive patients were treated from 04/2009 to 5/2010. For all patients, four different treatment plans including protons, RapidArc, IMRT and 3D-conformal-technique were retrospectively calculated and analyzed according to dosimetric aspects. Detailed DVH-analyses revealed that protons clearly reduced the dose to the OAR and entire normal tissue when compared to other techniques. Furthermore, the conformity index was significantly better and target volumes were covered consistent with the ICRU guidelines. Planning results suggest that treatment with protons can improve the therapeutic tolerance for the irradiation of rectal cancer, particularly for patients scheduled for an irradiation with an intensified chemotherapy regimen and identified to be at high risk for acute therapy-related toxicity. However, clinical experiences and long-term observation are needed to assess tumor response and related toxicity rates.
    Radiotherapy and Oncology 11/2011; 102(1):30-7. DOI:10.1016/j.radonc.2011.10.018 · 4.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Breast-conserving therapy consisting of segmental mastectomy followed by whole-breast irradiation (WBI) has become widely accepted as an alternative to mastectomy as a treatment for women with early-stage breast cancer. Accelerated partial-breast irradiation (APBI) is a shorter, alternative radiation technique for select patients with favorable early-stage breast cancer. We review here the different modalities of APBI delivery and discuss the possible benefits and harms associated with these treatments.
    Oncology (Williston Park, N.Y.) 04/2013; 27(4):329-42. · 2.32 Impact Factor
Show more