Article

Acetylation Regulates Gluconeogenesis by Promoting PEPCK1 Degradation via Recruiting the UBR5 Ubiquitin Ligase

State Key Laboratory of Genetic Engineering, School of Life Sciences, Medical College, Fudan University, Shanghai 20032, China.
Molecular cell (Impact Factor: 14.46). 07/2011; 43(1):33-44. DOI: 10.1016/j.molcel.2011.04.028
Source: PubMed

ABSTRACT Protein acetylation has emerged as a major mechanism in regulating cellular metabolism. Whereas most glycolytic steps are reversible, the reaction catalyzed by pyruvate kinase is irreversible, and the reverse reaction requires phosphoenolpyruvate carboxykinase (PEPCK1) to commit for gluconeogenesis. Here, we show that acetylation regulates the stability of the gluconeogenic rate-limiting enzyme PEPCK1, thereby modulating cellular response to glucose. High glucose destabilizes PEPCK1 by stimulating its acetylation. PEPCK1 is acetylated by the P300 acetyltransferase, and this acetylation stimulates the interaction between PEPCK1 and UBR5, a HECT domain containing E3 ubiquitin ligase, therefore promoting PEPCK1 ubiquitinylation and degradation. Conversely, SIRT2 deacetylates and stabilizes PEPCK1. These observations represent an example that acetylation targets a metabolic enzyme to a specific E3 ligase in response to metabolic condition changes. Given that increased levels of PEPCK are linked with type II diabetes, this study also identifies potential therapeutic targets for diabetes.

0 Followers
 · 
163 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lysine modifications have been studied extensively in the nucleus, where they play pivotal roles in gene regulation and constitute one of the pillars of epigenetics. In the cytoplasm, they are critical to proteostasis. However, in the last decade we have also witnessed the emergence of mitochondria as a prime locus for post-translational modification (PTM) of lysine thanks, in large measure, to evolving proteomic techniques. Here, we review recent work on evolving set of PTM that arise from the direct reaction of lysine residues with energized metabolic thioester-coenzyme A intermediates, including acetylation, succinylation, malonylation, and glutarylation. We highlight the evolutionary conservation, kinetics, stoichiometry, and cross-talk between members of this emerging family of PTMs. We examine the impact on target protein function and regulation by mitochondrial sirtuins. Finally, we spotlight work in the heart and cardiac mitochondria, and consider the roles acetylation and other newly-found modifications may play in heart disease.
    Frontiers in Physiology 09/2014; 5:301. DOI:10.3389/fphys.2014.00301
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cellular proteins are decorated with a wide range of acetyl and other acyl modifications. Many studies have demonstrated regulation of site-specific acetylation by acetyltransferases and deacetylases. Acylation is emerging as a new type of lysine modification, but less is known about its overall regulatory role. Furthermore, the mechanisms of lysine acylation, its overlap with protein acetylation, and how it influences cellular function are major unanswered questions in the field. In this review, we discuss the known roles of acetyltransferases and deacetylases and the sirtuins as a conserved family of a nicotinamide adenine dinucleotide (NAD(+))-dependent protein deacylases that are important for response to cellular stress and homeostasis. We also consider the evidence for an emerging idea of nonenzymatic protein acylation. Finally, we put forward the hypothesis that protein acylation is a form of protein "carbon stress" that the deacylases evolved to remove as a part of a global protein quality-control network.
    Molecular cell 04/2014; 54(1):5-16. DOI:10.1016/j.molcel.2014.03.027 · 14.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tumor cells commonly have increased glucose uptake and lactate accumulation. Lactate is produced from pyruvate by lactate dehydrogenase A (LDH-A), which is frequently overexpressed in tumor cells and is important for cell growth. Elevated transcription by c-Myc or HIF1α may contribute to increased LDH-A in some cancer types. Here, we show that LDH-A is acetylated at lysine 5 (K5) and that this acetylation inhibits LDH-A activity. Furthermore, the K5-acetylated LDH-A is recognized by the HSC70 chaperone and delivered to lysosomes for degradation. Replacement of endogenous LDH-A with an acetylation mimetic mutant decreases cell proliferation and migration. Importantly, K5 acetylation of LDH-A is reduced in human pancreatic cancers. Our study reveals a mechanism of LDH-A upregulation in pancreatic cancers.
    Cancer cell 03/2013; 23(4). DOI:10.1016/j.ccr.2013.02.005 · 23.89 Impact Factor

Preview

Download
3 Downloads
Available from

Similar Publications