Article

Disease causing mutations in the TNF and TNFR superfamilies: Focus on molecular mechanisms driving disease.

Protein Sciences, Catalyst Biosciences, 260 Littlefield Avenue, South San Francisco, CA 94080, USA.
Trends in Molecular Medicine (Impact Factor: 10.11). 07/2011; 17(9):494-505. DOI: 10.1016/j.molmed.2011.05.006
Source: PubMed

ABSTRACT The tumor necrosis factor (TNF) and TNF receptor (TNFR) superfamilies comprise multidomain proteins with diverse roles in cell activation, proliferation and cell death. These proteins play pivotal roles in the initiation, maintenance and termination of immune responses and have vital roles outside the immune system. The discovery and analysis of diseases associated with mutations in these families has revealed crucial mechanistic details of their normal functions. This review focuses on mutations causing four different diseases, which represent distinct pathological mechanisms that can exist within these superfamilies: autoimmune lymphoproliferative syndrome (ALPS; FAS mutations), common variable immunodeficiency (CVID; TACI mutations), tumor necrosis factor receptor associated periodic syndrome (TRAPS; TNFR1 mutations) and hypohidrotic ectodermal dysplasia (HED; EDA1/EDAR mutations). In particular, we highlight how mutations have revealed information about normal receptor-ligand function and how such studies might direct new therapeutic approaches.

1 Follower
 · 
103 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The TNF and TNFR superfamilies of proteins are conserved throughout evolution. The first invertebrate orthologs of TNF and TNFR, Eiger and Wengen, were identified in Drosophila, which enabled us to take advantage of its powerful genetics. Indeed, genetic studies on Eiger in the last decade have discovered their signaling mechanisms through activation of the JNK pathway and unveiled the role of Eiger-JNK signaling in a variety of cellular and tissue processes such as cell death, cell proliferation, tissue growth regulation, host defense, pain sensitization, and canalization. In this review, we will describe the in vivo signaling of Eiger and its physiological roles in fly development and homeostasis, and will discuss the evolution of the TNF/TNFR systems.
    Seminars in Immunology 06/2014; DOI:10.1016/j.smim.2014.05.003 · 6.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tumor necrosis factor receptor-associated periodic syndrome (TRAPS), formerly known as familial Hibernian fever, is the most common autosomal dominant autoinflammatory disease, resulting from mutations in the TNFRSF1A gene, encoding the 55-kD tumor necrosis factor receptor. The pathophysiologic mechanism of TRAPS remains ambiguous and only partially explained. The onset age of the syndrome is variable and the clinical scenery is characterized by recurrent episodes of high-grade fever that typically lasts 1-3 weeks, associated with migrating myalgia, pseudocellulitis, diffuse abdominal pain, appendicitis-like findings, ocular inflammatory signs, and risk of long-term amyloidosis. Fever episodes are responsive to high-dose corticosteroids, but different classes of drugs have been reported to be ineffective. The use of etanercept is unable to control systemic inflammation, while interleukin-1 blockade has been shown as effective in the control of disease activity in many patients reported so far.
    Clinical Rheumatology 06/2014; 33(9). DOI:10.1007/s10067-014-2722-z · 1.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ligands and receptors of the TNF superfamily are therapeutically relevant targets in a wide range of human diseases. This chapter describes assays based on ELISA, immunoprecipitation, FACS, and reporter cell lines to monitor interactions of tagged receptors and ligands in both soluble and membrane-bound forms using unified detection techniques. A reporter cell assay that is sensitive to ligand oligomerization can identify ligands with high probability of being active on endogenous receptors. Several assays are also suitable to measure the activity of agonist or antagonist antibodies, or to detect interactions with proteoglycans. Finally, self-interaction of membrane-bound receptors can be evidenced using a FRET-based assay. This panel of methods provides a large degree of flexibility to address questions related to the specificity, activation, or inhibition of TNF-TNF receptor interactions in independent assay systems, but does not substitute for further tests in physiologically relevant conditions.
    Methods in Enzymology 01/2014; 545:103-25. DOI:10.1016/B978-0-12-801430-1.00005-6 · 2.19 Impact Factor