A galactosamine-mediated drug delivery carrier for targeted liver cancer therapy.

School of Chemical Engineering, The University of Adelaide, Adelaide SA5005, Australia.
Pharmacological Research (Impact Factor: 4.35). 06/2011; 64(4):410-9. DOI:10.1016/j.phrs.2011.06.015
Source: PubMed

ABSTRACT In order to minimize the side effect of cancer chemotherapy, a novel galactosamine-mediated drug delivery carrier, galactosamine-conjugated albumin nanoparticles (GAL-AN), was developed for targeted liver cancer therapy. The albumin nanoparticles (AN) and doxorubicin-loaded AN (DOX-AN) were prepared by the desolvation of albumin in the presence of glutaraldehyde crosslinker. Morphological study indicated the spherical structure of these synthesized particles with an average diameter of around 200 nm. The functional ligand of galactosamine (GAL) was introduced onto the surfaces of AN and DOX-AN via carbodiimide chemistry to obtain GAL-AN and GAL-DOX-AN. Cellular uptake and kinetic studies showed that GAL-AN is able to be selectively incorporated into the HepG2 cells rather than AoSMC cells due to the existence of asialoglycoprotein receptors on HepG2 cell surface. The cytotoxicity, measured by MTT test, indicated that AN and GAL-AN are non-toxic and GAL-DOX-AN is more effective in HepG2 cell killing than that of DOX-AN. As such, our results implied that GAL-AN and GAL-DOX-AN have specific interaction with HepG2 cells via the recognition of GAL and asialoglycoprotein receptor, which renders GAL-AN a promising anticancer drug delivery carrier for liver cancer therapy.

0 0
  • [show abstract] [hide abstract]
    ABSTRACT: Liver is a vital organ responsible for plethora of functions including detoxification, protein synthesis, and the production of biochemicals necessary for the sustenance of life. Therefore, patients with chronic liver diseases such as viral hepatitis, liver cirrhosis, and hepatocellular carcinoma need immediate attention to sustain life and as a result are often exposed to the prolonged treatment with drugs/herbal medications. Lack of site-specific delivery of these medications to the hepatocytes/nonparenchymal cells and adverse effects associated with their off-target interactions limit their continuous use. This calls for the development and fabrication of targeted delivery systems which can deliver the drug payload at the desired site of action for defined period of time. The primary aim of drug targeting is to manipulate the whole body distribution of drugs, that is, to prevent distribution to non-target cells and concomitantly increase the drug concentration at the targeted site. Carrier molecules are designed for their selective cellular uptake, taking advantage of specific receptors or binding sites present on the surface membrane of the target cell. In this review, various aspects of liver targeting of drug molecules and herbal medications have been discussed which elucidate the importance of delivering the drugs/herbal medications at their desired site of action.
    BioMed Research International 01/2013; 2013:382184. · 2.88 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Conventional liver targeted system focuses on delivering drugs to liver, bringing toxicity on hepatic normal tissues. The purpose of this study is to construct a new system capable of specially targeting to hepatic carcinoma instead of the whole liver. Based on the fact that nanoparticles (NPs) bound with either biotin or avidin tend to accumulate in tumors and avidin-attached reagents were quickly eliminated from blood circulation and assembled in liver, trans-resveratrol loaded chitosan nanoparticles (CS-NPs), CS-NPs with the surface modified either by biotin (B-CS-NPs) or by both biotin and avidin (A-B-CS-NPs) were prepared and their physiochemical properties were investigated. The in vitro release profiles of the three NPs all conformed to bioexponential equation. Pharmacokinetic experiment indicated that A-B-CS-NPs rapidly assembled in liver after injection, with the highest liver targeting index of 2.70, while the modification of biotin attenuated the liver targeting ability of NPs. Inhibitory study on HepG2 cells declared that compared to trans-resveratrol solution and CS-NPs, both B-CS-NPs and A-B-CS-NPs significantly improved the anticancer activity. When incubated with HepG2 cells at high concentration for longer time, A-B-CS-NPs exhibited superior cytotoxicity than B-CS-NPs. This study exclaims that A-B-CS-NPs may be a potent drug delivery vector specially targeting to hepatic carcinoma.
    International journal of pharmaceutics 05/2013; · 2.96 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Nanomaterials offer new opportunities for cancer diagnosis and treatment. Multifunctional nanoparticles harboring various functions including targeting, imaging, therapy, and etc have been intensively studied aiming to overcome limitations associated with conventional cancer diagnosis and therapy. Of various nanoparticles, magnetic iron oxide nanoparticles with superparamagnetic property have shown potential as multifunctional nanoparticles for clinical translation because they have been used asmagnetic resonance imaging (MRI) constrast agents in clinic and their features could be easily tailored by including targeting moieties, fluorescence dyes, or therapeutic agents. This review summarizes targeting strategies for construction of multifunctional nanoparticles including magnetic nanoparticles-based theranostic systems, and the various surface engineering strategies of nanoparticles for in vivo applications.
    Theranostics 01/2012; 2(1):3-44. · 7.81 Impact Factor


Available from
Apr 2, 2014