Influenza virus-like particle can accommodate multiple subtypes of hemagglutinin and protect from multiple influenza types and subtypes

Medigen, Inc., 4539 Metropolitan Court, Frederick, MD, USA.
Vaccine (Impact Factor: 3.49). 06/2011; 29(35):5911-8. DOI: 10.1016/j.vaccine.2011.06.068
Source: PubMed

ABSTRACT Despite existing vaccines and specific therapies, epidemics of seasonal influenza annually claim 200,000-500,000 lives worldwide. Pandemic influenza represents an even greater threat, with numerous potentially pandemic viruses circulating in nature. Development of multi-specific vaccines against multiple pandemic or seasonal strains is important for human health and the global economy. Here we report a novel virus-like particle (VLP) platform that contains three hemagglutinin (HA) subtypes. This recombinant vaccine design resulted in the expression of three HA subtypes co-localized within a VLP. Experimental triple-HA VLPs containing HA proteins derived from H5N1, H7N2, and H2N3 viruses were immunogenic and protected ferrets from challenge from all three potentially pandemic viruses. Similarly, VLPs containing HA subtypes derived from seasonal H1N1, H3N2, and type B influenza viruses protected ferrets from three seasonal influenza viruses. We conclude that this technology may represent a novel strategy for rapid development of trivalent seasonal and pandemic vaccines.

  • Source
    • "These studies are hampered by unavailability of reagents to H7 and H9 subtypes and will be accomplished when reference standards become available. Previous electron microscopy and SRID studies on triple-subtype VLPs containing seasonal influenza subtypes have shown that distinct HA subtypes are colocalizing within multi-subtype VLPs at approximately equivalent quantities (Pushko et al., 2011). In case if certain HA subtypes require higher quantities for optimal immunogenicity, their presence within multi-subtype VLPs can potentially be improved by genetic engineering. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Avian influenza H5, H7 and H9 viruses top the World Health Organization's (WHO) list of subtypes with the greatest pandemic potential. Here we describe a recombinant virus-like particle (VLP) that co-localizes hemagglutinin (HA) proteins derived from H5N1, H7N2, and H9N2 viruses as an experimental vaccine against these viruses. A baculovirus vector was configured to co-express the H5, H7, and H9 genes from A/Viet Nam/1203/2004 (H5N1), A/New York/107/2003 (H7N2) and A/Hong Kong/33982/2009 (H9N2) viruses, respectively, as well as neuraminidase (NA) and matrix (M1) genes from A/Puerto Rico/8/1934 (H1N1) virus. Co-expression of these genes in Sf9 cells resulted in production of triple-subtype VLPs containing HA molecules derived from the three influenza viruses. The triple-subtype VLPs exhibited hemagglutination and neuraminidase activities and morphologically resembled influenza virions. Intranasal vaccination of ferrets with the VLPs resulted in induction of serum antibody responses and efficient protection against experimental challenges with H5N1, H7N2, and H9N2 viruses.
    Virology 04/2013; 442(1). DOI:10.1016/j.virol.2013.03.027 · 3.28 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The baculovirus/insect cell system has proven to be a powerful tool for the expression of eukaryotic proteins. Therapeutics, especially in the field of vaccinology, are often composed of several different protein subunits. Conventional baculoviral expression schemes largely lack efficient strategies for simultaneous multi-gene expression. The MultiBac technology which is based on an engineered genome of Autographa californica nuclear polyhedrosis virus in combination with specially designed transfer vectors is an elegant way for flexible generation of multi-subunit proteins in insect cells. Yet, the glycosylation pattern of insect cell-derived products is not favorable for many applications. Therefore, a modified version of MultiBac, SweetBac, was generated allowing for a flexible glycosylation of target proteins in insect cells. Beyond the SweetBac technology MultiBac can further be designed for bridging the gap between cell engineering and transient modulation of host genes for improved and product tailored expression of recombinant proteins.
    03/2012; 4(2). DOI:10.4161/bioe.22327
Show more