The role of p21 in regulating mammalian regeneration

The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA. .
Stem Cell Research & Therapy (Impact Factor: 3.37). 06/2011; 2(3):30. DOI: 10.1186/scrt71
Source: PubMed


The MRL (Murphy Roths Large) mouse has provided a unique model of adult mammalian regeneration as multiple tissues show this important phenotype. Furthermore, the healing employs a blastema-like structure similar to that seen in amphibian regenerating tissue. Cells from the MRL mouse display DNA damage, cell cycle G2/M arrest, and a reduced level of p21CIP1/WAF. A functional role for p21 was confirmed when tissue injury in an adult p21-/- mouse showed a healing phenotype that matched the MRL mouse, with the replacement of tissues, including cartilage, and with hair follicle formation and a lack of scarring. Since the major canonical function of p21 is part of the p53/p21 axis, we explored the consequences of p53 deletion. A regenerative response was not seen in a p53-/- mouse and the elimination of p53 from the MRL background had no negative effect on the regeneration of the MRL.p53-/- mouse. An exploration of other knockout mice to identify p21-dependent, p53-independent regulatory pathways involved in the regenerative response revealed another significant finding showing that elimination of transforming growth factor-β1 displayed a healing response as well. These results are discussed in terms of their effect on senescence and differentiation.

1 Follower
14 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tendinopathies are common muskoloskeletal injuries that lead to pain and disability. Development and pathogenesis of tendinopathy is attributed to progressive pathological changes to the structure, function, and biology of tendon. The nature of this disease state, whether acquired by acute or chronic injury, is being actively investigated. Scarring, disorganized tissue, and loss of function characterize adult tendon healing. Recent work from animal models has begun to reveal the potential for adult mammalian tendon regeneration, the replacement of diseased with innate tissue. This review discusses what is known about musculoskeletal regeneration from a molecular perspective and how these findings can be applied to tendinopathy. Non-mammalian and mammalian models are discussed with emphasis on the potential of Murphy Roths Large mice to serve as a model of adult tendon regeneration. Comparison of regeneration in non-mammals, foetal mammals and adult mammals emphasizes distinctly different contributing factors to effective regeneration.
    International Journal of Experimental Pathology 06/2013; 94(4). DOI:10.1111/iep.12031 · 2.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Musculoskeletal injuries greatly affect the U.S. population and current clinical approaches fail to restore long-term native tissue structure and function. Tissue engineering is a strategy advocated to improve tendon healing; however, the field still needs to establish biological benchmarks for assessing the effectiveness of tissue-engineered structures. Investigating superior healing models, such as the MRL/MpJ, offers the opportunity to first characterize successful healing and then apply experimental findings to tissue-engineered therapies. This study seeks to evaluate the MRL/MpJ's healing response following a central patellar tendon injury compared to wildtype. Gene expression and histology were assessed at 3, 7, and 14 days following injury and mechanical properties were measured at 2, 5, and 8 weeks. Native patellar tendon biological and mechanical properties were not different between strains. Following injury, the MRL/MpJ displayed increased mechanical properties between 5 and 8 weeks; however, early tenogenic expression patterns were not different between the strains. Furthermore, expression of the cyclin-dependent kinase inhibitor, p21, was not different between strains, suggesting an alternative mechanism may be driving the healing response. Future studies will investigate collagen structure and alignment of the repair tissue and characterize the complete healing transcriptome to identify mechanisms driving the MRL/MpJ response. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
    Journal of Orthopaedic Research 05/2015; DOI:10.1002/jor.22928 · 2.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the molecular and cellular mechanisms underlying tissue turnover and repair are essential towards addressing pathologies in aging, injury, and disease. Each tissue has distinct means of maintaining homeostasis and healing after injury. For some, resident stem cell populations mediate both of these processes. These stem cells, by definition, are self-renewing and give rise to all the differentiated cells of that tissue. However, not all organs fit with this traditional stem cell model of regeneration, and some do not appear to harbor somatic stem or progenitor cells capable of multilineage in vivo reconstitution. Despite recent progress in tendon progenitor cell research, our current knowledge of the mechanisms regulating tendon cell homeostasis and injury response is limited. Understanding the role of resident tendon cell populations is of great importance for regenerative medicine-based approaches to tendon injuries and disease. The goal of this review is to bring to light our current knowledge regarding tendon progenitor cells and their role in tissue maintenance and repair. We will focus on pressing questions in the field and the new tools, including model systems, available to address them.
    07/2015; 1(3):1-8. DOI:10.1007/s40610-015-0021-3
Show more

Preview (3 Sources)

14 Reads
Available from