Use of chemometrics in the selection of a Saccharomyces cerevisiae expression system for recombinant cyprosin B production.

Center of Biodiversity, Functional and Integrative Genomics (BioFIG), Faculty of Sciences, University of Lisbon, Campo Grande, Lisbon, Portugal.
Biotechnology Letters (Impact Factor: 1.85). 07/2011; 33(11):2111-9. DOI:10.1007/s10529-011-0678-5
Source: PubMed

ABSTRACT Two multivariate statistical methods, factor analysis (FA) and hierarchical cluster analysis (HCA), were applied to experimental data set to evaluate their usefulness in selecting the adequate expression system and optimal growth parameters for recombinant cyprosin B production. Using FA, the large data set was reduced to two factors representing 73.4% of variability. Factor 1, with 53.5% of variability, corresponds to recombinant cyprosin B expression and efficient secretion, while factor 2, accounting for 19.9% of variability, represents cell growth and physiological characteristics. FA and HCA allowed the establishment of correlations among different variables and the clusters obtained providing clear identification of the experimental parameters related to cyprosin B production, which results on more accurate scientific output and time saving when selection of an adequate expression system is concerned.

0 0
  • [show abstract] [hide abstract]
    ABSTRACT: The generation of novel yeast cell factories for production of high-value industrial biotechnological products relies on three metabolic engineering principles: design, construction, and analysis. In the last two decades, strong efforts have been put on developing faster and more efficient strategies and/or technologies for each one of these principles. For design and construction, three major strategies are described in this review: (1) rational metabolic engineering; (2) inverse metabolic engineering; and (3) evolutionary strategies. Independent of the selected strategy, the process of designing yeast strains involves five decision points: (1) choice of product, (2) choice of chassis, (3) identification of target genes, (4) regulating the expression level of target genes, and (5) network balancing of the target genes. At the construction level, several molecular biology tools have been developed through the concept of synthetic biology and applied for the generation of novel, engineered yeast strains. For comprehensive and quantitative analysis of constructed strains, systems biology tools are commonly used and using a multi-omics approach. Key information about the biological system can be revealed, for example, identification of genetic regulatory mechanisms and competitive pathways, thereby assisting the in silico design of metabolic engineering strategies for improving strain performance. Examples on how systems and synthetic biology brought yeast metabolic engineering closer to industrial biotechnology are described in this review, and these examples should demonstrate the potential of a systems-level approach for fast and efficient generation of yeast cell factories.
    FEMS Yeast Research 12/2011; 12(2):228-48. · 2.46 Impact Factor