Article

Synthesis of molecularly imprinted polymers via ring-opening metathesis polymerization for solid-phase extraction of bisphenol A.

College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
Analytical and Bioanalytical Chemistry (Impact Factor: 3.66). 07/2011; 401(4):1423-32. DOI: 10.1007/s00216-011-5178-x
Source: PubMed

ABSTRACT The use of molecularly imprinted polymers (MIPs) prepared by ring-opening metathesis polymerization (ROMP) for bisphenol A (BPA) was reported in this article. The resulting MIPs have high imprinting and adsorption capacities, and can be used for separation and determination of BPA in environmental water samples. The successful application of ROMP in the molecular imprinting field is described here. For the first time, two cross-linkers (dicyclopentadiene and 2,5-norbornadiene) and two Grubbs catalysts (first and second generation) were investigated to compare their effects on the binding performance of MIPs. The ROMP technique is able to create the imprinted polymers within 1 h under mild conditions. Furthermore, it can provide MIPs with obvious imprinting effects towards the template, very fast template rebinding kinetics, high binding capacity and appreciable selectivity over structurally related compounds. The adsorption process for MIPs in this study can be completed within 45 min, which is much faster than that of bulk MIPs synthesized by traditional free-radical polymerization. The resulting imprinting polymer was evaluated for its use as a sorbent support in an off-line solid-phase extraction approach to recover BPA from diluted aqueous samples. The optimized extraction protocol resulted in a reliable MISPE method suitable for selective extraction and preconcentration of BPA from tap water, human urine and liquid milk samples. This article demonstrates the practical feasibility of the MIPs prepared via ROMP as solid-phase extraction materials.

0 Bookmarks
 · 
69 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Herein, we present a survey of the literature covering the development of molecular imprinting science and technology over the years 2004–2011. In total, 3779 references to the original papers, reviews, edited volumes and monographs from this period are included, along with recently identified uncited materials from prior to 2004, which were omitted in the first instalment of this series covering the years 1930–2003. In the presentation of the assembled references, a section presenting reviews and monographs covering the area is followed by sections describing fundamental aspects of molecular imprinting including the development of novel polymer formats. Thereafter, literature describing efforts to apply these polymeric materials to a range of application areas is presented. Current trends and areas of rapid development are discussed. Copyright © 2014 John Wiley & Sons, Ltd.
    Journal of Molecular Recognition 06/2014; 27(6). · 3.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The molecularly imprinted polymeric microspheres (MIPMs, 3∼5 μm), used as high-performance liquid chromatography (HPLC) and solid-phase extraction (SPE) packing materials for anti-AIDS drug emtricitabine (FTC), were synthesized by precipitation polymerization. The effects of ratio of chloroform to acetonitrile on the morphology and diameter of MIPMs were investigated. The prepared MIPMs were characterized by HPLC. The imprinting factor (2.26) suggests that the resultant MIPMs exhibit good recognition and affinity to FTC. In addition, the MIPMs were used in SPE as packing material for separation and enrichment of FTC. The recovery of FTC on MIPMs cartridge was 97.6 % in standard solution. Finally, the MIPMs cartridge was applied to extract the FTC in human serum samples. Impurities in sample have been mostly removed, and the average recovery of 92.5 % was obtained with a detection limit of 0.005 μg/mL and a linear range of 0.02∼4.0 μg/mL. The method established can be used to monitor the FTC in human serum sample with good accuracy and selectivity.
    Analytical and Bioanalytical Chemistry 03/2013; · 3.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel molecularly imprinted polymer (MIP) for vanillin was prepared by photo initiated polymerization in dichloromethane using a mixed semi-covalent and non-covalent imprinting strategy. Taking polymerisable syringaldehyde as "dummy" template, acrylamide was chosen as functional monomer on B3LYP/6-31+G(d,p) density functional theory computational method basis with counterpoise. The binding parameters for the recognition of vanillin on imprinted polymers were studied with three different isotherm models (Langmuir, bi-Langmuir and Langmuir-Freundlich) and compared. The results indicate an heterogeneity of binding sites. It was found and proved by DFT calculations that the specific binding of vanillin in the cavities is due to non-covalent interactions of the template with the hydroxyphenyl- and the amide-moieties. The binding geometry of vanillin in the MIP cavity was also modelled. The obtained MIP is highly specific for vanillin (with an imprinting factor of 7.4) and was successfully applied to the extraction of vanillin from vanilla pods, red wine spike with vanillin, natural and artificial vanilla sugar with a recovery of 80%.
    Analytica chimica acta 08/2013; 790:47-55. · 4.31 Impact Factor