Nuclear receptors as therapeutic targets for Alzheimer's disease.

Case Western Reserve University School of Medicine, Department of Neurosciences, Alzheimer Research Laboratory, Cleveland, OH 44106, USA.
Expert Opinion on Therapeutic Targets (Impact Factor: 4.9). 07/2011; 15(9):1085-97. DOI: 10.1517/14728222.2011.594043
Source: PubMed

ABSTRACT INTRODUCTION: Alzheimer's disease (AD) is characterized by the accumulation and extensive deposition of amyloid β (Aβ) in the parenchyma of the brain. This accumulation of amyloid is associated with perturbations in synaptic function, impairments in energy metabolism and induction of a chronic inflammatory response which acts to promote neuronal loss and cognitive impairment. AREAS COVERED: Currently, there are no drugs that target the underlying mechanisms of AD. Here, we propose a class of nuclear receptors as novel and promising new therapeutic targets for AD. This review summarizes the literature on nuclear receptors and their effects on AD-related pathophysiology. EXPERT OPINION: Nuclear receptors are attractive targets for the treatment of AD due to their ability to facilitate degradation of Aβ, affect microglial activation and suppress the inflammatory milieu of the brain. Liver X receptor agonists have proven difficult to move into clinical trials as long-term treatment results in hepatic steatosis. It is our view that PPAR-γ activation remains a promising avenue for the treatment for AD; however, the poor BBB permeability of the currently available agonists and the negative outcome of the Phase III clinical trials are likely to diminish interest in pursuing this target.


Available from: Gary Landreth, Sep 02, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is the most common form of dementia characterized by synaptic dysfunction, memory loss, neuroinflammation, and neuronal cell death. Amyloid-β (Aβ), recognized as the main culprit of AD, aggregates and accumulates in the extracellular compartment as neuritic plaques, after deregulation of its production or clearance. Apolipoprotein E (ApoE) plays a major role in Aβ clearance and its expression is transcriptionally regulated by the liver X receptor and retinoid X receptors (RXRs) system. Bexarotene (BEXA), an RXR agonist, that increases ApoE expression and microglia phagocytosis and has been proposed as a promising therapy for AD, resolving both the amyloid pathology and memory loss. Despite the first compelling report, however, multiple failures have been documented, raising concern about whether BEXA could in fact become a novel disease-modifying strategy for AD. To help clarify this, we investigated the effect of BEXA in vivo at multiple levels in TASTPM transgenic mice. Seven-day oral administration of BEXA to these mice did not achieve any significant memory improvement, plaque reduction, or enhancement of microglial cell activation. No differences were found when specifically investigating the microglial phagocytic state in vivo. In addition, a brain structural analysis with magnetic resonance did not detect any BEXA-mediated change in the volume reduction of the main affected brain areas in our mice. These results suggest that BEXA has no beneficial effect on the multi-factorial pathologic phenotype of AD mice.
    Journal of Alzheimer's disease: JAD 03/2015; DOI:10.3233/JAD-150029 · 3.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In 2012, a novel approach to the treatment of Alzheimer's disease was introduced, heralding a wave of excitement in the field of dementia. Bexarotene, a retinoid X receptor agonist, was shown to reverse neurodegeneration, improve cognition, and decrease levels of amyloid-β in transgenic mice expressing familial Alzheimer disease mutations. Since then, there has been widespread discussion about bexarotene, as well as a number of follow-up studies. Bexarotene is a unique compound, as it is approved by the US Food and Drug Administration for other purposes and there are reasonable data to justify its mechanism of action in dementia. This review discusses these studies and the emerging role of bexarotene in the clinical field of Alzheimer's dementia.
    Neuropsychiatric Disease and Treatment 01/2015; 11:311. DOI:10.2147/NDT.S61309 · 2.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Insulin is a key hormone regulating metabolism. Insulin binding to cell surface insulin receptors engages many signaling intermediates operating in parallel and in series to control glucose, energy, and lipids while also regulating mitogenesis and development. Perturbations in the function of any of these intermediates, which occur in a variety of diseases, cause reduced sensitivity to insulin and insulin resistance with consequent metabolic dysfunction. Chronic inflammation ensues which exacerbates compromised metabolic homeostasis. Since insulin has a key role in learning and memory as well as directly regulating ERK, a kinase required for the type of learning and memory compromised in early Alzheimer's disease (AD), insulin resistance has been identified as a major risk factor for the onset of AD. Animal models of AD or insulin resistance or both demonstrate that AD pathology and impaired insulin signaling form a reciprocal relationship. Of note are human and animal model studies geared toward improving insulin resistance that have led to the identification of the nuclear receptor and transcription factor, peroxisome proliferator-activated receptor gamma (PPARγ) as an intervention tool for early AD. Strategic targeting of alternate nodes within the insulin signaling network has revealed disease-stage therapeutic windows in animal models that coalesce with previous and ongoing clinical trial approaches. Thus, exploiting the connection between insulin resistance and AD provides powerful opportunities to delineate therapeutic interventions that slow or block the pathogenesis of AD.
    Neurobiology of Disease 09/2014; 72. DOI:10.1016/j.nbd.2014.09.001 · 5.20 Impact Factor