Effects of encapsulated propolis on blood glycemic control, lipid metabolism, and insulin resistance in type 2 diabetes mellitus rats.

College of Animal Science, Zhejiang University, No. 268 Kaixuan Road, Hangzhou 310029, China.
Evidence-based Complementary and Alternative Medicine (Impact Factor: 1.72). 01/2012; 2012:981896. DOI: 10.1155/2012/981896
Source: PubMed

ABSTRACT The present study investigates the encapsulated propolis on blood glycemic control, lipid metabolism, and insulin resistance in type 2 diabetes mellitus (T2DM) rats. The animal characteristics and biological assays of body weight, fasting blood glucose (FBG), fasting serum insulin (FINS), insulin act index (IAI), triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) were measured and euglycemic hyperinsulinemic glucose clamp technique were used to determine these effects. Our findings show that oral administration of encapsulated propolis can significantly inhibit the increasing of FBG and TG in T2DM rats and can improve IAI and M value in euglycemic hyperinsulinemic clamp experiment. There was no significant effects on body weight, TC, HDL-C, and LDL-C in T2DM rats treated with encapsulated propolis. In conclusion, the results indicate that encapsulated propolis can control blood glucose, modulate lipid metabolism, and improve the insulin sensitivity in T2DM rats.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Complement-C1q TNF-related protein 1 (CTRP1), a member of the CTRP superfamily, possesses anti-inflammatory and anti-diabetic effects in mice. However, the clinical relevance of CTRP1 has been seldom explored. The current study aimed to investigate the association of circulating CTRP1 and type 2 diabetes mellitus (T2DM) in a Chinese population. Serum CTRP1 and adiponectin levels of 96 T2DM patients and 85 healthy subjects were determined by ELISA, and their associations with adiposity, glucose and lipid profiles were studied. In a subgroup of this study, the 75-g oral glucose tolerance test (OGTT) was performed in 20 healthy and 20 T2DM subjects to evaluate the relationship among serum levels of CTRP1 and adiponectin, insulin secretion and insulin sensitivity. Serum CTRP1 levels were significantly increased in patients with T2DM, compared with healthy controls (p<0.001). Similar to adiponectin, serum levels of CTRP1 were significantly correlated to several parameters involved in glucose metabolism and insulin resistance, and independently associated with fasting glucose levels (p<0.05) after BMI and gender adjustments. Furthermore, CTRP1 levels were positively correlated to insulin secretion, while negatively to insulin sensitivity, as measured by OGTT. CTRP1 is a novel adipokine associated with T2DM in humans. The paradoxical increase of serum CTRP1 levels in T2DM subjects may be due to a compensatory response to the adverse glucose and lipid metabolism, which warrants further investigation.
    PLoS ONE 01/2014; 9(5):e94478. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Propolis has attracted attention in recent years due to its beneficial effects, which make it a potential preventive and therapeutic agent as well as a useful additive in food and cosmetics. The aim of this review is to discuss the growing evidence that propolis may, via a diverse array of biological actions, assist in the prevention of some inflammation-mediated pathologies including cardiovascular disease. The active components of propolis that have been identified so far include polyphenols and flavonoids. These compounds have cardioprotective, vasoprotective, antioxidant, antiatherosclerotic, anti-inflammatory and antiangiogenic actions. Many studies have been undertaken to elucidate the mechanism(s) by which propolis acts, which involve cellular signaling targets and interactions at the genomic level. This review will highlight the effects of propolis that may assist in the prevention of chronic degenerative diseases, such as cardiovascular disease.
    Evidence-based Complementary and Alternative Medicine 01/2013; 2013:175135. · 1.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To understand the mechanisms underlying the regulating dyslipidemia action of Chinese propolis and Brazilian green propolis, we investigated their effects on phosphatidylcholine-specific phospholipase C (PC-PLC) activity and annexin a7 (ANXA7) level which play crucial roles in the control of the progress of atherosclerosis. Furthermore, active oxygen species (ROS) levels, nuclear factor-KappaB p65 (NF- κ B p65), and mitochondrial membrane potential (MMP) were also investigated in oxidized-LDL- (ox-LDL-) stimulated human umbilical vein endothelial cells (HUVECs). Our data indicated that the treatment of both types of propolis 12.5 μ g/mL significantly increased cell viability and attenuated apoptosis rate, increased ANXA7 level, and decreased PC-PLC activity. Both types of propolis also inhibited ROS generation as well as the subsequent MMP collapse, and NF- κ B p65 activation induced by ox-LDL in HUVECs. Our results also indicated that Chinese propolis and Brazilian green propolis had similar biological activities and prevented ox-LDL induced cellular dysfunction in HUVECs.
    Evidence-based complementary and alternative medicine : eCAM. 01/2014; 2014:465383.

Full-text (2 Sources)

Available from