Effects of Encapsulated Propolis on Blood Glycemic Control, Lipid Metabolism, and Insulin Resistance in Type 2 Diabetes Mellitus Rats

College of Animal Science, Zhejiang University, No. 268 Kaixuan Road, Hangzhou 310029, China.
Evidence-based Complementary and Alternative Medicine (Impact Factor: 1.88). 01/2012; 2012(1741-427X):981896. DOI: 10.1155/2012/981896
Source: PubMed


The present study investigates the encapsulated propolis on blood glycemic control, lipid metabolism, and insulin resistance in type 2 diabetes mellitus (T2DM) rats. The animal characteristics and biological assays of body weight, fasting blood glucose (FBG), fasting serum insulin (FINS), insulin act index (IAI), triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) were measured and euglycemic hyperinsulinemic glucose clamp technique were used to determine these effects. Our findings show that oral administration of encapsulated propolis can significantly inhibit the increasing of FBG and TG in T2DM rats and can improve IAI and M value in euglycemic hyperinsulinemic clamp experiment. There was no significant effects on body weight, TC, HDL-C, and LDL-C in T2DM rats treated with encapsulated propolis. In conclusion, the results indicate that encapsulated propolis can control blood glucose, modulate lipid metabolism, and improve the insulin sensitivity in T2DM rats.

28 Reads
  • Source
    • "A recent report indicated ethanolic extract of propolis inhibited atherosclerosis in ApoE-knockout mice [6]. Furthermore, we also reported that Chinese propolis regulated lipid metabolism of diabetes in vivo by regulating triglycerides, total cholesterol, high-density lipoprotein, and low-density lipoprotein cholesterol [7, 8]. However, the molecular mechanisms underlying such protect effects of propolis have not been fully elucidated. "
    [Show abstract] [Hide abstract]
    ABSTRACT: To understand the mechanisms underlying the regulating dyslipidemia action of Chinese propolis and Brazilian green propolis, we investigated their effects on phosphatidylcholine-specific phospholipase C (PC-PLC) activity and annexin a7 (ANXA7) level which play crucial roles in the control of the progress of atherosclerosis. Furthermore, active oxygen species (ROS) levels, nuclear factor-KappaB p65 (NF- κ B p65), and mitochondrial membrane potential (MMP) were also investigated in oxidized-LDL- (ox-LDL-) stimulated human umbilical vein endothelial cells (HUVECs). Our data indicated that the treatment of both types of propolis 12.5 μ g/mL significantly increased cell viability and attenuated apoptosis rate, increased ANXA7 level, and decreased PC-PLC activity. Both types of propolis also inhibited ROS generation as well as the subsequent MMP collapse, and NF- κ B p65 activation induced by ox-LDL in HUVECs. Our results also indicated that Chinese propolis and Brazilian green propolis had similar biological activities and prevented ox-LDL induced cellular dysfunction in HUVECs.
    Evidence-based Complementary and Alternative Medicine 04/2014; 2014:465383. DOI:10.1155/2014/465383 · 1.88 Impact Factor
  • Source
    • "Propolis has been shown to modulate lipid and lipoprotein metabolism. Propolis administration diminished liver cholesterol and triglyceride content and decreased the rate of hepatic triglyceride synthesis in rats [74, 75]. In LDL receptor knockout mice (LDLr−/−), treatment with Brazilian red propolis (250 mg/kg/day) decreased levels of triacylglycerol (TAG), total cholesterol (TC), and non-high-density lipoprotein cholesterol (non-HDL-C) [76]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Propolis has attracted attention in recent years due to its beneficial effects, which make it a potential preventive and therapeutic agent as well as a useful additive in food and cosmetics. The aim of this review is to discuss the growing evidence that propolis may, via a diverse array of biological actions, assist in the prevention of some inflammation-mediated pathologies including cardiovascular disease. The active components of propolis that have been identified so far include polyphenols and flavonoids. These compounds have cardioprotective, vasoprotective, antioxidant, antiatherosclerotic, anti-inflammatory and antiangiogenic actions. Many studies have been undertaken to elucidate the mechanism(s) by which propolis acts, which involve cellular signaling targets and interactions at the genomic level. This review will highlight the effects of propolis that may assist in the prevention of chronic degenerative diseases, such as cardiovascular disease.
    Evidence-based Complementary and Alternative Medicine 04/2013; 2013(4):175135. DOI:10.1155/2013/175135 · 1.88 Impact Factor
  • Source
    • "However, against that was the observed antiproliferative affect noted on the Hs27 cell line, which may well then result in strong adverse side affects and so the requirement for more localized drug delivery systems. This is because although compounds 1 (cardanol) and 2 (cardol) affected some cancer cell lines in vitro with lower IC50 values than that against the non-transformed Hs27 cell line, this small difference is unlikely to be sufficient to allow safe systemic administration without side affects, but may be sufficient when targeted local delivery is performed [50,51]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Propolis is a complex resinous honeybee product. It is reported to display diverse bioactivities, such as antimicrobial, anti-inflammatory and anti-tumor properties, which are mainly due to phenolic compounds, and especially flavonoids. The diversity of bioactive compounds depends on the geography and climate, since these factors affect the floral diversity. Here, Apis mellifera propolis from Nan province, Thailand, was evaluated for potential anti-cancer activity. Propolis was sequentially extracted with methanol, dichloromethane and hexane and the cytotoxic activity of each crude extract was assayed for antiproliferative/cytotoxic activity in vitro against five human cell lines derived from duet carcinoma (BT474), undifferentiated lung (Chaco), liver hepatoblastoma (Hep-G(2)), gastric carcinoma (KATO-III) and colon adenocarcinoma (SW620) cancers. The human foreskin fibroblast cell line (Hs27) was used as a non-transformed control. Those crude extracts that displayed antiproliferative/cytotoxic activity were then further fractionated by column chromatography using TLC-pattern and MTT-cytotoxicity bioassay guided selection of the fractions. The chemical structure of each enriched bioactive compound was analyzed by nuclear magnetic resonance and mass spectroscopy. The crude hexane and dichloromethane extracts of propolis displayed antiproliferative/cytotoxic activities with IC(50) values across the five cancer cell lines ranging from 41.3 to 52.4 μg/ml and from 43.8 to 53.5 μg/ml, respectively. Two main bioactive components were isolated, one cardanol and one cardol, with broadly similar in vitro antiproliferation/cytotoxicity IC(50) values across the five cancer cell lines and the control Hs27 cell line, ranging from 10.8 to 29.3 μg/ml for the cardanol and < 3.13 to 5.97 μg/ml (6.82 - 13.0 μM) for the cardol. Moreover, both compounds induced cytotoxicity and cell death without DNA fragmentation in the cancer cells, but only an antiproliferation response in the control Hs27 cells However, these two compounds did not account for the net antiproliferation/cytotoxic activity of the crude extracts suggesting the existence of other potent compounds or synergistic interactions in the propolis extracts. This is the first report that Thai A. mellifera propolis contains at least two potentially new compounds (a cardanol and a cardol) with potential anti-cancer bioactivity. Both could be alternative antiproliferative agents for future development as anti-cancer drugs.
    BMC Complementary and Alternative Medicine 03/2012; 12(1):27. DOI:10.1186/1472-6882-12-27 · 2.02 Impact Factor
Show more

Similar Publications

Preview (3 Sources)

28 Reads
Available from