Detection of recurrence in glioma: a comparative prospective study between Tc-99m GHA SPECT and F-18 FDG PET/CT.

Department of Nuclear Medicine, Medical College Kolkata, Kolkata, India.
Clinical nuclear medicine (Impact Factor: 3.93). 08/2011; 36(8):650-5. DOI: 10.1097/RLU.0b013e318217aee0
Source: PubMed


Early and correct diagnosis of tumor recurrence and its differentiation from therapy-related changes is crucial for prompt and adequate management of glioma patients. The purpose of this study was to compare the efficacies of Tc-99m glucoheptonate (GHA) single photon emission tomography (SPECT) and F-18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) in detection of recurrence in patients with glioma.
A total of 90 patients with histopathologically proven glioma who had suspicion of recurrence clinically or on magnetic resonance imaging were evaluated using Tc-99m GHA SPECT and FDG PET/CT. Combination of clinical follow-up, repeat imaging, and biopsy (when available) was taken as gold standard.
On the basis of gold standard, 59 patients were positive and 31 were negative for tumor recurrence. The sensitivity, specificity, and accuracy of GHA SPECT were 85%, 97%, and 89%, respectively, whereas those of FDG PET/CT were 70%, 97%, and 80%, respectively. On subgroup analysis, GHA SPECT performed better than FDG PET/CT in all grades except for grade II gliomas, where both were equally effective. In all, 15 patients had intermodality discordance, with GHA SPECT being correct in 13 of them.
GHA SPECT appears to be a better imaging modality than FDG PET/CT for detection of recurrent gliomas.

Download full-text


Available from: Punit Sharma,
1 Follower
51 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND AND OBJECTIVE. There is a need for objective semiquantitative indexes for the evaluation of results of single-photon emission tomography (SPECT) in patients with brain glioma. The aim of this study was to validate the total size index (TSI) and total intensity index (TII) based on technetium-99m-methoxyisobutylisonitrile ((99m)Tc-MIBI) SPECT scans to discriminate the patients with high-grade glioma versus low-grade glioma and to evaluate the changes of viable glioma tissue by the means of TSI and TII after surgery and after radiation treatment. MATERIAL AND METHODS. Thirty-two patients (mean age, 55 years [SD, 18]; 20 men) underwent a (99m)Tc-MIBI-SPECT scan before surgery. Of these patients, 27 underwent a postoperative (99m)Tc-MIBI-SPECT scan and 7 patients with grade IV glioma underwent a third (99m)Tc-MIBI-SPECT scan after radiation treatment. TII that corresponds to the area and intensity of tracer uptake and TSI that corresponds to the area of tracer uptake were calculated before surgery, after surgery, and after radiation treatment. RESULTS. The TII and TSI were found to be valid in discriminating the patients with high-grade versus low-grade glioma with optimal cutoff values of 3.0 and 2.5, respectively. Glioma grade correlated with the preoperative TSI score (r=0.76, P<0.001) and preoperative TII score (r=0.64, P<0.001). There was a significant decrease in the TII and TSI after surgery in patients with grade IV glioma. After radiation treatment, there was a significant increase in the TII in patients with grade IV glioma. CONCLUSIONS. TSI and TII were found to be reliable in discriminating the patients with high-grade versus low-grade glioma and allowed for the semiquantitative evaluation of change in viable glioma tissue after surgery and after radiation treatment in patients with grade IV glioma.
    Medicina (Kaunas, Lithuania) 01/2012; 48(1):15-21. · 0.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Brain tumors have a relatively high incidence (>14/100000 people/year) and represent a major cause of death in the population. The direct and indirect costs of brain tumors are high in the developed countries (5.2 bn EUR/year in the EU; 4.46 bn USD/year in the US). A combination of recent advancements in molecular neuroimaging, with positron emission tomography (PET) in the first place, providing clinicians with an improved diagnostic and therapy follow-up efficacy, novel approaches in the field of neurosurgery (including neuronavigation, intraoperative control of the nervous function, tumor histology and volume), and developments in treatment strategies (including new chemotherapeutics and new targeted agents, immunotherapies, sophisticated irradiation protocols) has in the past years improved the survival of brain tumor patients. A major component of further improvements is related to advancements in the development of novel molecular imaging biomarkers for brain tumor detection, including new PET radiopharmacons with high specificity, sensitivity and diagnostic accuracy. Despite the fact that FDG is the "working horse" of brain tumor imaging with PET and well over 90 % of diagnostic imaging studies in neuro-oncology are made with FDG world-wide, due to its sub-optimal specificity and sensitivity the search for non-FDG brain tumor PET radiotracers has been intensifying during the past decade in order to improve the diagnostic sensitivity, specificity and accuracy of molecular imaging of brain tumors. The most promising non-FDG brain tumor radiotracers include radioactively labeled nucleoside and amino acid analogues, tracers of oxidative metabolism, fatty acid metabolism and hypoxia, as well as receptor ligands of various kinds. The most widely tested non-FDG radiotracers include [11C]methionine (MET), [18F]fluorothymidine (FLT), [18F]fluoroethyl-l-tyrosine (FET), [18F]fluoro-α-methyltyrosine (FMT), [18F]fluoromisonidazole (F-MISO), 6-[18F]fluoro-dihydroxy-l-phenylalanine (F-DOPA), [11C]choline (CHO) and [18F]choline. The selective advantages of these radiotracers, compared to FDG, are varying, MET and FET appearing to be the most useful dedicated glioma radiotracers. Nevertheless, several other non-metabolic radiopharmaceuticals are also being tested or are in the validation phase. Although novel dedicated radiotracer candidates should offer an increased selectivity, specificity and diagnostic accuracy when compared to the recently existing brain tumor tracers, a dual or a multitracer approach may still offer the optimal solution in brain tumor imaging with PET in the near future.
    The quarterly journal of nuclear medicine and molecular imaging: official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR), [and] Section of the Society of.. 04/2012; 56(2):173-90. · 2.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glioblastoma multiforme (GBM) is the most common and most malignant primary brain tumor occurring during adulthood. The incidence of GBM is nearly 5 cases per 100,000 population per year. The standard of care for newly diagnosed GBM includes surgical resection when possible, followed by radiotherapy and concomitant and adjuvant chemotherapy with temozolomide. Imaging modalities used in nuclear medicine, namely positron emission tomography (PET) and single-photon emission computed tomography (SPECT) have been employed towards the evaluation of brain tumors. Herewith, we discuss the value of the above imaging techniques in the assessment of GBM aggressiveness, in the distinction of treatment induced necrosis from glioma recurrence, in the estimation of overall prognosis and in the evaluation of treatment response in patients with GBM.
    05/2012; 5(4):308-13. DOI:10.2174/1874471011205040308
Show more