Article

Molecular organization and timing of Wnt1 expression define cohorts of midbrain dopamine neuron progenitors in vivo.

Department of Neuroscience, Brown University, Providence, Rhode Island 02903, USA.
The Journal of Comparative Neurology (Impact Factor: 3.51). 06/2011; 519(15):2978-3000. DOI: 10.1002/cne.22710
Source: PubMed

ABSTRACT Midbrain dopamine (MbDA) neurons are functionally heterogeneous and modulate complex functions through precisely organized anatomical groups. MbDA neurons are generated from Wnt1-expressing progenitors located in the ventral mesencephalon (vMes) during embryogenesis. However, it is unclear whether the progenitor pool is partitioned into distinct cohorts based on molecular identity and whether the timing of gene expression uniquely identifies subtypes of MbDA neurons. In this study we show that Wnt1-expressing MbDA progenitors from embryonic day (E)8.5-12.5 have dynamic molecular identities that correlate with specific spatial locations in the vMes. We also tested the hypothesis that the timing of Wnt1 expression in progenitors is related to the distribution of anatomically distinct cohorts of adult MbDA neurons using genetic inducible fate mapping (GIFM). We demonstrate that the Wnt1 lineage contributes to specific cohorts of MbDA neurons during a 7-day epoch and that the contribution to MbDA neurons predominates over other ventral Mb domains. In addition, we show that calbindin-, GIRK2-, and calretinin-expressing MbDA neuron subtypes are derived from Wnt1-expressing progenitors marked over a broad temporal window. Through GIFM and quantitative analysis we demonstrate that the Wnt1 lineage does not undergo progressive lineage restriction, which eliminates a restricted competence model of generating MbDA diversity. Interestingly, we uncover that two significant peaks of Wnt1 lineage contribution to MbDA neurons occur at E9.5 and E11.5. Collectively, our findings delineate the temporal window of MbDA neuron generation and show that lineage and timing predicts the terminal distribution pattern of MbDA neurons.

0 Bookmarks
 · 
119 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The proper functioning of the dopaminergic system requires the coordinated formation of projections extending from dopaminergic neurons in the substantia nigra (SN), ventral tegmental area (VTA) and retrorubral field to a wide array of forebrain targets including the striatum, nucleus accumbens and prefrontal cortex. The mechanisms controlling the assembly of these distinct dopaminergic cell clusters are not well understood. Here, we have investigated in detail the migratory behavior of dopaminergic neurons giving rise to either the SN or the medial VTA using genetic inducible fate mapping, ultramicroscopy, time-lapse imaging, slice culture and analysis of mouse mutants. We demonstrate that neurons destined for the SN migrate first radially and then tangentially, whereas neurons destined for the medial VTA undergo primarily radial migration. We show that tangentially migrating dopaminergic neurons express the components of the reelin signaling pathway, whereas dopaminergic neurons in their initial, radial migration phase express CXC chemokine receptor 4 (CXCR4), the receptor for the chemokine CXC motif ligand 12 (CXCL12). Perturbation of reelin signaling interferes with the speed and orientation of tangentially, but not radially, migrating dopaminergic neurons and results in severe defects in the formation of the SN. By contrast, CXCR4/CXCL12 signaling modulates the initial migration of dopaminergic neurons. With this study, we provide the first molecular and functional characterization of the distinct migratory pathways taken by dopaminergic neurons destined for SN and VTA, and uncover mechanisms that regulate different migratory behaviors of dopaminergic neurons.
    Development 02/2014; 141(3):661-73. DOI:10.1242/dev.099937 · 6.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Wnts are a highly conserved family of lipid-modified glycoproteins that work as morphogens to activate several signaling pathways, leading to remodeling of the cytoskeleton and the regulation of gene transcription. Wnt signaling regulates multiple cellular functions and cell systems, including the development and maintenance of midbrain dopaminergic (mDA) neurons. These neurons are of considerable interest for regenerative medicine because their degeneration results in Parkinson's disease (PD). This review focuses on new advances in understanding key functions of Wnts in mDA neuron development and using novel tools to regulate Wnt signaling in regenerative medicine for PD. Particularly, recent reports indicate that appropriate levels of Wnt signaling are essential to improve the quantity and quality of stem cell- or reprogrammed cell-derived mDA neurons to be used in drug discovery and cell replacement therapy for PD.
    Journal of Molecular Cell Biology 01/2014; DOI:10.1093/jmcb/mju001 · 7.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sonic Hedgehog (SHH) and WNT proteins are key regulators in many developmental processes, like embryonic patterning and brain development. In the brain, SHH is expressed in a gradient starting in the floor plate (FP) progressing ventrally in the midbrain, where it is thought to be involved in the development and specification of mesodiencephalic dopaminergic (mdDA) neurons. GLI2A-mediated SHH-signaling induces the expression of Gli1, which is inhibited when cells start expressing SHH themselves. To determine whether mdDA neurons receive GLI2A-mediated SHH-signaling during differentiation, we used a BAC-transgenic mouse model expressing eGFP under the control of the Gli1 promoter. This mouse-model allowed for mapping of GLI2A-mediated SHH-signaling temporal and spatial in the mouse midbrain. Since mdDA neurons are born from E10.5, peaking at E11.0-E12.0, we examined Gli1-eGFP embryos at E11.5, E12.5, and E13.5, indicating whether Gli1 was induced before or during mdDA development and differentiation. Our data indicate that GLI2A-mediated SHH-signaling is not involved in mdDA neuronal differentiation. However, it appears to be involved in the differentiation of neurons which make up a subset of the red nucleus (RN). In order to detect whether mdDA neuronal differentiation may be under the control of canonical WNT-signaling, we used a transgenic mouse-line expressing LacZ under the influence of stable β-catenin. Here, we show that TH+ neurons of the midbrain receive canonical WNT-signaling during differentiation. Therefore, we suggest that early SHH-signaling is indirectly involved in mdDA development through early patterning of the midbrain area, whereas canonical WNT-signaling is directly involved in the differentiation of the mdDA neuronal population.
    PLoS ONE 05/2014; 9(5):e97926. DOI:10.1371/journal.pone.0097926 · 3.53 Impact Factor

Full-text (2 Sources)

Download
57 Downloads
Available from
Jun 5, 2014