Article

High temperatures enhance cooperative motions between CBM and catalytic domains of a thermostable cellulase: mechanism insights from essential dynamics.

Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil.
Physical Chemistry Chemical Physics (Impact Factor: 4.2). 06/2011; 13(30):13709-20. DOI: 10.1039/c0cp02697b
Source: PubMed

ABSTRACT Cellulases from thermophiles are capable of cleaving sugar chains from cellulose efficiently at high temperatures. The thermo-resistant Cel9A-68 cellulase possesses two important domains: CBM and a catalytic domain connected by a Pro/Ser/Thr rich linker. These domains act cooperatively to allow efficient catalysis. Despite exhaustive efforts to characterize cellulase binding and mechanism of action, a detailed description of the cellulose intrinsic flexibility is still lacking. From computational simulations we studied the temperature influence on the enzyme plasticity, prior to substrate binding. Interestingly, we observed an enhancement of collective motions at high temperatures. These motions are the most representative and describe an intrinsic hinge bending transition. A detailed analysis of these motions revealed an interdomain approximation where D459 and G460, located at the linker region, are the hinge residues. Therefore, we propose a new putative site for mutagenesis targeting the modulation of such conformational transition that may be crucial for activity.

0 Bookmarks
 · 
96 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A synthetic, highly active cellulase enzyme suitable for in planta production may be a valuable tool for biotechnological approaches to develop transgenic biofuel crops with improved digestibility. Here, we demonstrate that the addition of a plant derived carbohydrate binding module (CBM) to a synthetic glycosyl hydrolase improved the activity of the hydrolase in releasing sugar from plant biomass. A CEL-HYB1-CBM enzyme was generated by fusing a hybrid microbial cellulase, CEL-HYB1, with the CBM of the tomato (Solanum lycopersicum) SlCel9C1 cellulase. CEL-HYB1 and CEL-HYB1-CBM enzymes were produced in vitro using Pichia pastoris and the activity of these enzymes was tested using carboxymethylcellulose, MUC, and native crystalline cellulose assays. The presence of the CBM substantially improved the endoglucanase activity of CEL-HYB1, especially against the native crystalline cellulose encountered in Sorghum bicolor plant cell walls. These results indicate that addition of an endogenous plant derived CBM to cellulase enzymes may enhance hydrolytic activity.
    Frontiers in Plant Science 01/2012; 3:254. · 3.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Over the last decades, a vast structural knowledge has been gathered on the HIV-1 protease (PR). Noticeably, most of the studies focused the B-subtype, which has the highest prevalence in developed countries. Accordingly, currently available anti-HIV drugs target this subtype, with considerable benefits for the corresponding patients. However, in developing countries, there is a wide variety of HIV-1 subtypes carrying PR polymorphisms related to reduced drug susceptibility. The non-active site mutation, M36I, is the most frequent polymorphism, and is considered as a non-B subtype marker. Yet, the structural impact of this substitution on the PR structure and on the interaction with natural substrates remains poorly documented. Results Herein, we used molecular dynamics simulations to investigate the role of this polymorphism on the interaction of PR with six of its natural cleavage-sites substrates. Free energy analyses by MMPB/SA calculations showed an affinity decrease of M36I-PR for the majority of its substrates. The only exceptions were the RT-RH, with equivalent affinity, and the RH-IN, for which an increased affinity was found. Furthermore, molecular simulations suggest that, unlike other peptides, RH-IN induced larger structural fluctuations in the wild-type enzyme than in the M36I variant. Conclusions With multiple approaches and analyses we identified structural and dynamical determinants associated with the changes found in the binding affinity of the M36I variant. This mutation influences the flexibility of both PR and its complexed substrate. The observed impact of M36I, suggest that combination with other non-B subtype polymorphisms, could lead to major effects on the interaction with the 12 known cleavage sites, which should impact the virion maturation.
    BMC Genomics 10/2014; 15(S7):S5. · 4.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel endoglucanase gene was cloned from Rhizopus stolonifer and expressed in Escherichia coli, the gene product EG II (45 kDa) was assigned to Glycoside Hydrolase Family 45 (GH45), and its specific activity on phosphoric acid-swollen cellulose (PASC) was 48 IU/mg. To solve the problem of substrate accumulation in the cellulose hydrolysis and enhance the catalytic efficiency of endoglucanase, the eg2 gene was modified by site directed mutagenesis. Mutations generated by overlapping PCR have been proven to increase its catalytic activity on carboxymenthyl cellulose, microcrystalline cellulose (Avicel) and PASC, among which the mutant EG II-E containing all 6 mutations (N39S, V136D, T251G, D255G, P256S and E260D) peaked 121 IU/mg on PASC. The bioinformatic analysis showed that 2 key catalytic residues (D136 and D260) moved closer with the opening of a loop after mutagenesis, and a tunnel was formed by structural transformation. This structure was conducive for the substrate to access the active centre, and D136 played an indispensable role in the substrate recognition.
    World Journal of Microbiology and Biotechnology 08/2014; · 1.35 Impact Factor

Full-text

View
43 Downloads
Available from
May 31, 2014