Article

Critical Transition in Tissue Homeostasis Accompanies Murine Lung Senescence

Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America.
PLoS ONE (Impact Factor: 3.53). 06/2011; 6(6):e20712. DOI: 10.1371/journal.pone.0020712
Source: PubMed

ABSTRACT Respiratory dysfunction is a major contributor to morbidity and mortality in aged populations. The susceptibility to pulmonary insults is attributed to "low pulmonary reserve", ostensibly reflecting a combination of age-related musculoskeletal, immunologic and intrinsic pulmonary dysfunction.
Using a murine model of the aging lung, senescent DBA/2 mice, we correlated a longitudinal survey of airspace size and injury measures with a transcriptome from the aging lung at 2, 4, 8, 12, 16 and 20 months of age. Morphometric analysis demonstrated a nonlinear pattern of airspace caliber enlargement with a critical transition occurring between 8 and 12 months of age marked by an initial increase in oxidative stress, cell death and elastase activation which is soon followed by inflammatory cell infiltration, immune complex deposition and the onset of airspace enlargement. The temporally correlative transcriptome showed exuberant induction of immunoglobulin genes coincident with airspace enlargement. Immunohistochemistry, ELISA analysis and flow cytometry demonstrated increased immunoglobulin deposition in the lung associated with a contemporaneous increase in activated B-cells expressing high levels of TLR4 (toll receptor 4) and CD86 and macrophages during midlife. These midlife changes culminate in progressive airspace enlargement during late life stages.
Our findings establish that a tissue-specific aging program is evident during a presenescent interval which involves early oxidative stress, cell death and elastase activation, followed by B lymphocyte and macrophage expansion/activation. This sequence heralds the progression to overt airspace enlargement in the aged lung. These signature events, during middle age, indicate that early stages of the aging immune system may have important correlates in the maintenance of tissue morphology. We further show that time-course analyses of aging models, when informed by structural surveys, can reveal nonintuitive signatures of organ-specific aging pathology.

0 Followers
 · 
100 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There are several parameters employed to evaluate lung growth or development in biopsies. The simplest method is the radial alveolar count (RAC), which is the number of alveoli transected by a perpendicular line drawn from the center of a respiratory bronchiole to the nearest septal division or pleural margin. The RAC method provides a reliable index of lung growth in intrauterine and early postnatal development, as well as in childhood. The method has been also applied in assessment of lung development in diverse pathological conditions. Up to date there are no data regarding RAC in healthy adulthood and its relation with aging. Lung specimens from CD1 mice at the age of 2, 12 or 24 months were fixed in 10% neutral-buffered formalin and paraffin-embedded. After staining of 5-μm sections with hematoxylin and eosin, RAC was determined. Results showed a statistically significant difference between the RAC means at 2 months (6.2±3.5) and 12 and 24 months (4.3±3.5 and 4.8±2.6, respectively); there was no significant difference between the means at 12 and 24 months (F=8.61, df1=2, df2=259, p=0.000; Student-Newman-Keuls test: M2≠M12=M24). Thus, our findings show that the RAC decreases during aging until it plateau. Aging is associated with morphometric changes in the lung that lead to decreased lung function. The chronicity of this process is poorly understood with respect to time of onset or progression. This work augments our understanding of this phenomenon and demonstrates that the RAC provides a simple and accurate method to analyze aging-related changes in the lung.
    Microscopy: advances in scientific research and education, 6 edited by A. Mendez-Vilas, 09/2014: chapter Radial alveolar count assessment in the aging: pages 344-347; Microscopy Book Series., ISBN: 978-84-942134-3-4
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite considerable progress in identifying health risks to crewmembers related to exposure to galactic/cosmic rays (GCR) and solar particle events (SPE) during space travel, its long-term effects on the pulmonary system are unknown. We used a murine risk projection model to investigate the impact of exposure to space-relevant radiation (SR) on the lung. C3H mice were exposed to (137)Cs gamma rays, protons (acute, low dose exposure mimicking the 1972 SPE), 600 MeV/u (56)Fe ions, or 350 MeV/u (28)Si ions at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. Animals were irradiated at the age of 2.5 months and sacrificed 23.5 months post-irradiation, at 26 months of age. Compared to age-matched non-irradiated mice, SR exposures led to significant airspace enlargement and dose-dependent decreased systemic oxygenation levels. These were associated with late mild lung inflammation and prominent cellular injury, with significant oxidative stress and apoptosis (caspase-3 activation) in the lung parenchyma. SR, especially high energy (56)Fe or (28)Si ions markedly decreased sphingosine-1 phosphate levels and Akt- and p38MAPK phosphorylation, depleted anti-senescence Sirtuin-1 and increases biochemical markers of autophagy. Exposure to SR caused dose-dependent, pronounced late lung pathological sequelae consistent with alveolar simplification and cellular signaling of increased injury and decreased repair. The associated systemic hypoxemia suggested that this previously uncharacterized space radiation-associated lung injury (SPRALI) was functionally significant, indicating that further studies are needed to define the risk and to develop appropriate lung-protective countermeasures for manned deep space missions. Copyright © 2014, American Journal of Physiology - Lung Cellular and Molecular Physiology.
    AJP Lung Cellular and Molecular Physiology 12/2014; DOI:10.1152/ajplung.00260.2014 · 4.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ageing is the main risk factor for major non-communicable chronic lung diseases, including chronic obstructive pulmonary disease, most forms of lung cancer and idiopathic pulmonary fibrosis. While the prevalence of these diseases continually increases with age, their respective incidence peaks at different times during the lifespan, suggesting specific effects of ageing on the onset and/or pathogenesis of chronic obstructive pulmonary disease, lung cancer and idiopathic pulmonary fibrosis. Recently, the nine hallmarks of ageing have been defined as cell-autonomous and non-autonomous pathways involved in ageing. Here, we review the available evidence for the involvement of each of these hallmarks in the pathogenesis of chronic obstructive pulmonary disease, lung cancer, or idiopathic pulmonary fibrosis. Importantly, we propose an additional hallmark, "dysregulation of the extracellular matrix", which we argue acts as a crucial modifier of cell-autonomous changes and functions, and as a key feature of the above-mentioned lung diseases. Copyright ©ERS 2015.
    European Respiratory Journal 02/2015; DOI:10.1183/09031936.00186914 · 7.13 Impact Factor

Full-text (3 Sources)

Download
10 Downloads
Available from
Jun 11, 2014