Rac1/osmosensing scaffold for MEKK3 contributes via phospholipase C-γ1 to activation of the osmoprotective transcription factor NFAT5

Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 06/2011; 108(29):12155-60. DOI: 10.1073/pnas.1108107108
Source: PubMed

ABSTRACT Separate reports that hypertonicity activates p38 via a Rac1-OSM-MEKK3-MKK3-p38 pathway and that p38α contributes to activation of TonEBP/OREBP led us to the hypothesis that Rac1 might activate TonEBP/OREBP via p38. The present studies examine that possibility. High NaCl is hypertonic. We find that siRNA knockdown of Rac1 reduces high NaCl-induced increase of TonEBP/OREBP transcriptional activity (by reducing its transactivating activity but not its nuclear localization). Similarly, siRNA knockdown of osmosensing scaffold for MEKK3 (OSM) also reduces high NaCl-dependent TonEBP/OREBP transcriptional and transactivating activities. Simultaneous siRNA knockdown of Rac1 and OSM is not additive in reduction of TonEBP/OREBP transcriptional activity, indicating a common pathway. However, siRNA knockdown of MKK3 does not reduce TonEBP/OREBP transcriptional activity, although siRNA knockdown of MKK6 does. Nevertheless, the effect of Rac1 on TonEBP/OREBP is also independent of MKK6 because it occurs in MKK6-null cells. Furthermore, we find that siRNA knockdown of Rac1 or OSM actually increases activity (phosphorylation) of p38, rather than decreasing it, as previously reported. Thus, the effect of Rac1 on TonEBP/OREBP is independent of p38. We find instead that phospholipase C-γ1 (PLC-γ1) is involved. When transfected into PLC-γ1-null mouse embryonic fibroblast cells, catalytically active Rac1 does not increase TonEBP/OREBP transcriptional activity unless PLC-γ1 is reconstituted. Similarly, dominant-negative Rac1 also does not inhibit TonEBP/OREBP in PLC-γ1-null cells unless PLC-γ1 is reconstituted. We conclude that Rac1/OSM supports TonEBP/OREBP activity and that this activity is mediated via PLC-γ1, not p38.

Download full-text


Available from: Xiaoming Zhou, Dec 30, 2013
  • Advances in enzyme regulation 09/2011; DOI:10.1016/j.advenzreg.2011.09.017
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cells coordinate and integrate various functional modules that control their dynamics, intracellular trafficking, metabolism and gene expression. Such capacity is mediated by specific scaffold proteins that tether multiple components of signaling pathways at plasma membrane, Golgi apparatus, mitochondria, endoplasmic reticulum, nucleus and in more specialized subcellular structures such as focal adhesions, cell-cell junctions, endosomes, vesicles and synapses. Scaffold proteins act as "pacemakers" as well as "placemakers" that regulate the temporal, spatial and kinetic aspects of protein complex assembly by modulating the local concentrations, proximity, subcellular dispositions and biochemical properties of the target proteins through the intricate use of their modular protein domains. These regulatory mechanisms allow them to gate the specificity, integration and crosstalk of different signaling modules. In addition to acting as physical platforms for protein assembly, many professional scaffold proteins can also directly modify the properties of their targets while they themselves can be regulated by post-translational modifications and/or mechanical forces. Furthermore, multiple scaffold proteins can form alliances of higher-order regulatory networks. Here, we highlight the emerging themes of scaffold proteins by analyzing their common and distinctive mechanisms of action and regulation, which underlie their functional plasticity in cell signaling. Understanding these mechanisms in the context of space, time and force should have ramifications for human physiology and for developing new therapeutic approaches to control pathological states and diseases.
    Cellular Signalling 06/2012; 24(11):2143-65. DOI:10.1016/j.cellsig.2012.06.002 · 4.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mammalian cells are normally stressed by high interstitial NaCl in the renal medulla and by lesser elevation of NaCl in several other tissues. High NaCl damages proteins and DNA and can kill cells. Known protective responses include nuclear translocation of the transcription factor NFAT5 and other proteins. In order better to understand the extent and significance of changes in nuclear protein abundance, we extracted nuclear and cytoplasmic proteins separately from HEK293 cells and measured by LC-MS/MS (iTRAQ) changes of abundance of proteins in the extracts in response to high NaCl at three time points: 1 hour, 8 hours, and adapted for two passages. We confidently identified a total of 3190 proteins. 163 proteins changed significantly at least at one time point in the nucleus. We discerned the biological significance of the changes by Gene Ontology and protein network analysis. Proteins that change in the nucleus include ones involved in protein folding and localization, microtubule-based process, regulation of cell death, cytoskeleton organization, DNA metabolic process, RNA processing, and cell cycle. Among striking changes in the nucleus, we found a decrease of all six 14-3-3 isoforms; dynamic changes of "cytoskeletal" proteins, suggestive of nucleoskeletal reorganization; rapid decrease of tubulins; and dynamic changes of heat shock proteins. Identification of these changes of nuclear protein abundance enhances our understanding of high NaCl-induced cellular stress, and provides leads to previously unknown damages and protective responses.
    Physiological Genomics 09/2012; DOI:10.1152/physiolgenomics.00068.2012 · 2.81 Impact Factor