Article

Alternate Charging and Discharging of Capacitor to Enhance the Electron Production of Bioelectrochemical Systems

State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, PR China.
Environmental Science & Technology (Impact Factor: 5.48). 06/2011; 45(15):6647-53. DOI: 10.1021/es200759v
Source: PubMed

ABSTRACT A bioelectrochemical system (BES) can be operated in both "microbial fuel cell" (MFC) and "microbial electrolysis cell" (MEC) modes, in which power is delivered and invested respectively. To enhance the electric current production, a BES was operated in MFC mode first and a capacitor was used to collect power from the system. Then the charged capacitor discharged electrons to the system itself, switching into MEC mode. This alternate charging and discharging (ACD) mode helped the system produce 22-32% higher average current compared to an intermittent charging (IC) mode, in which the capacitor was first charged from an MFC and then discharged to a resistor, at 21.6 Ω external resistance, 3.3 F capacitance and 300 mV charging voltage. The effects of external resistance, capacitance and charging voltage on average current were studied. The average current reduced as the external resistance and charging voltage increased and was slightly affected by the capacitance. Acquisition of higher average current in the ACD mode was attributed to the shorter discharging time compared to the charging time, as well as a higher anode potential caused by discharging the capacitor. Results from circuit analysis and quantitatively calculation were consistent with the experimental observations.

0 Followers
 · 
141 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sediment microbial fuel cells (SMFCs) are used as renewable power sources to operate remote sensors. However, increasing the electrode surface area results in decreased power density, which demonstrates that SMFCs do not scale up with size. As an alternative to the physical scale-up of SMFCs, we proposed that it is possible to scale up power by using smaller-sized individually operated SMFCs connected to a power management system that electrically isolates the anodes and cathodes. To demonstrate our electronic scale-up approach, we operated one 0.36-m2 SMFC (called a single-equivalent SMFC) and four independent SMFCs of 0.09 m2 each (called scaled-up SMFCs) and managed the power using an innovative custom-developed power management system. We found that the single-equivalent SMFC and the scaled-up SMFCs produced similar power for the first 155 days. However, in the long term (>155 days) our scaled-up SMFCs generated significantly more power than the single-equivalent SMFC (2.33 mW vs. 0.64 mW). Microbial community analysis of the single-equivalent SMFC and the scaled-up SMFCs showed very similar results, demonstrating that the difference in operation mode had no significant effect on the microbial community. When we compared scaled-up SMFCs with parallel SMFCs, we found that the scaled-up SMFCs generated more power. Our novel approach demonstrates that SMFCs can be scaled up electronically.
    Journal of Power Sources 12/2014; 272:311–319. DOI:10.1016/j.jpowsour.2014.08.070 · 5.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is known that cell potential increases while anode resistance decreases during the start-up of microbial fuel cells (MFCs). Biological capacitance, defined as the apparent capacitance attributed to biological activity including biofilm production, plays a role in this phenomenon. In this research, electrochemical impedance spectroscopy was employed to study anode capacitance and resistance during the start-up period of MFCs so that the role of biological capacitance was revealed in electricity generation by MFCs. It was observed that the anode capacitance ranged from 3.29 to 120 mF which increased by 16.8 % to 18-20 times over 10-12 days. Notably, lowering the temperature and arresting biological activity via fixation by 4 % para formaldehyde resulted in the decrease of biological capacitance by 16.9 and 62.6 %, indicating a negative correlation between anode capacitance and anode resistance of MFCs. Thus, biological capacitance of anode should play an important role in power generation by MFCs. We suggest that MFCs are not only biological reactors and/or electrochemical cells, but also biological capacitors, extending the vision on mechanism exploration of electron transfer, reactor structure design and electrode materials development of MFCs.
    Bioprocess and Biosystems Engineering 02/2015; DOI:10.1007/s00449-015-1373-z · 1.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The microbial fuel cell (MFC) technology offers sustainable solutions for distributed power systems and energy positive wastewater treatment, but the generation of practically usable power from MFCs remains a major challenge for system scale up and application. Commonly used external resistors won't harvest any usable energy, so energy-harvesting circuits are needed for real world applications. This review summarizes, explains, and discusses the different energy harvesting methods, components, and systems that can extract and condition the MFC energy for direct utilization. This study aims to assist environmental scientists and engineers to gain fundamental understandings of these electronic systems and algorithms, and it also offers research directions and insights on how to overcome the barriers, so the technology can be further advanced and applied in larger scale.
    Environmental Science and Technology 02/2015; 49(6). DOI:10.1021/es5047765 · 5.48 Impact Factor