Visualization of image data from cells to organisms.

European Molecular Biology Laboratory, Heidelberg, Germany.
Nature Methods (Impact Factor: 23.57). 03/2010; 7(3 Suppl):S26-41. DOI: 10.1038/nmeth.1431
Source: PubMed

ABSTRACT Advances in imaging techniques and high-throughput technologies are providing scientists with unprecedented possibilities to visualize internal structures of cells, organs and organisms and to collect systematic image data characterizing genes and proteins on a large scale. To make the best use of these increasingly complex and large image data resources, the scientific community must be provided with methods to query, analyze and crosslink these resources to give an intuitive visual representation of the data. This review gives an overview of existing methods and tools for this purpose and highlights some of their limitations and challenges.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Focused ion beam (FIB) milling permits the accurate extraction of ultrathin (c. 100 nm) cross sectional lamellae from microfossils found in geological thin sections. Subsequent TEM analysis of these lamellae can provide unique insights into the ultrastructure, chemistry and taphonomy of Precambrian microfossils at the micrometer to nanometer scale. Combining serial FIB milling with SEM imaging extends this capability to three dimensional (3D) tomographic reconstruction and visualization of Precambrian microfossils, revealing information not available in light microscopy.Here we apply these techniques to two iconic silicified microfossil assemblages, from the ∼3400 Ma Strelley Pool Formation of Western Australia and the ∼1900 Ma Gunflint Formation of Canada. All the examined microfossils have carbonaceous walls surrounded by pure silica. Impregnation of microfossil walls by nano-grains of silica is common, together with variable degrees of wall displacement and replacement by silica. All microfossils are rigidly preserved in 3D and show little or no folding or compression. However, there are also notable differences in taphonomic preservation. Our examples of the spheroidal Gunflint microfossil Huroniospora showed the highest fidelity of preservation with a continuous carbonaceous wall fossilized by spheroidal nano-silica grains that resemble those found on bacterial surfaces in modern silicifying hot-spring environments. The nucleation of these silica nano-spheres on the microfossil walls has induced an artificial ‘saw-tooth-like’ ridged wall texture that may subsequently hinder species-level identification. The Strelley Pool microfossils in comparison show a lower fidelity of preservation with small parts of the microfossil walls completely replaced by silica, plus extensive recrystallization of spheroidal silica nano-grains to angular micro-quartz. Our examples of the sheath-like filamentous Gunflint microfossil Siphonophycus showed the lowest fidelity of preservation with many gaps in the carbonaceous walls and significant redistribution of carbon by recrystallizing silica grains. A model is presented to explain these observations.Criteria for distinguishing highly probable microfossils from non-cellular carbonaceous microstructures (e.g., botryoids and grain coatings) using FIB-based imaging are put forward for the first time here, using examples drawn from the Strelley Pool Formation and comparisons with younger Gunflint material.The combined in situ techniques of FIB–TEM and FIB–SEM nano-tomography potentially provide a wealth of new nano-scale information regarding the biogenicity, antiquity and taphonomy of Precambrian microfossils. However, the destructive nature of both techniques makes their application to unique palaeontological specimens problematical.
    Precambrian Research 11/2012; 220-221:234-250. DOI:10.1016/j.precamres.2012.08.005 · 6.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ischemic cerebrovascular disease annually affects 15 million people world-wide, including 5 million deaths and other forms of permanent disability. In some research centers in Cuba new neuroprotective therapies are being developed, so it is essential to study its effect. In this paper the use of digital image processing methods to quantify the apparent diffusion of coefficient maps (ADC) in ischemic patients obtained using weighed MRI diffusion is proposed. The study involved 19 individuals. Of these, 14 had ischemic lesions within the first 12 hours with an age between 29 and 89 years. The other five individuals were healthy subjects aged between 28 and 62 years. A native tool (ADCquant) was developed in Matlab. This software is used to determine ADC maps in three brain regions: the ischemic and contralateral areas and a region of cerebrospinal fluid. The ADC map was useful in quantifying the ischemic areas their mean value was 50.7±8.7*10-5mm2/s. Whereas, the mean in healthy tissue and cerebrospinal fluid was 83.0±9.4*10-5mm2/s, 311.4±12.1*10-5mm2/s respectively. Statistical analysis showed significant differences between the three areas. This tool help to manage and quantify ADC maps. Moreover, a first quantification using ADC maps of ischemic patients in Cuba is provided.
    Revista Facultad de Ingeniería 09/2014; 4(8):39-47. · 0.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Biologists regularly face an increasingly difficult task - to effectively communicate bigger and more complex structural data using an ever-expanding suite of visualization tools. Whether presenting results to peers or educating an outreach audience, a scientist can achieve maximal impact with minimal production time by systematically identifying an audience's needs, planning solutions from a variety of visual communication techniques and then applying the most appropriate software tools. A guide to available resources that range from software tools to professional illustrators can help researchers to generate better figures and presentations tailored to any audience's needs, and enable artistically inclined scientists to create captivating outreach imagery.
    Nature Reviews Molecular Cell Biology 10/2014; 15(10):690-8. DOI:10.1038/nrm3874 · 37.16 Impact Factor

Full-text (2 Sources)

Available from
Jun 4, 2014