Article

Prediction of FAD interacting residues in a protein from its primary sequence using evolutionary information.

Institute of Microbial Technology, Sector 39A, Chandigarh, India.
BMC Bioinformatics (Impact Factor: 3.02). 01/2010; 11 Suppl 1:S48. DOI:10.1186/1471-2105-11-S1-S48
Source: DOAJ

ABSTRACT Flavin binding proteins (FBP) plays a critical role in several biological functions such as electron transport system (ETS). These flavoproteins contain very tightly bound, sometimes covalently, flavin adenine dinucleotide (FAD) or flavin mono nucleotide (FMN). The interaction between flavin nucleotide and amino acids of flavoprotein is essential for their functionality. Thus identification of FAD interacting residues in a FBP is an important step for understanding their function and mechanism.
In this study, we describe models developed for predicting FAD interacting residues using 15, 17 and 19 window pattern. Support vector machine (SVM) based models have been developed using binary pattern of amino acid sequence of protein and achieved maximum accuracy 69.65% with Mathew's Correlation Coefficient (MCC) 0.39 and Area Under Curve (AUC) 0.773. The performance of these models have been improved significantly from 69.65% to 82.86% with MCC 0.66 and AUC 0.904, when evolutionary information is used as input in SVM. The evolutionary information was generated in form of position specific score matrix (PSSM) profile by using PSI-BLAST at e-value 0.001. All models were developed on 198 non-redundant FAD binding protein chains containing 5172 FAD interacting residues and evaluated using fivefold cross-validation technique.
This study suggests that evolutionary information of 17 amino acid patterns perform best for FAD interacting residues prediction. We also developed a web server which predicts FAD interacting residues in a protein which is freely available for academics.

0 0
 · 
1 Bookmark
 · 
134 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Despite the tremendous progress in the field of drug designing, discovering a new drug molecule is still a challenging task. Drug discovery and development is a costly, time consuming and complex process that requires millions of dollars and 10-15 years to bring new drug molecules in the market. This huge investment and long-term process are attributed to high failure rate, complexity of the problem and strict regulatory rules, in addition to other factors. Given the availability of 'big' data with ever improving computing power, it is now possible to model systems which is expected to provide time and cost effectiveness to drug discovery process. Computer Aided Drug Designing (CADD) has emerged as a fast alternative method to bring down the cost involved in discovering a new drug. In past, numerous computer programs have been developed across the globe to assist the researchers working in the field of drug discovery. Broadly, these programs can be classified in three categories, freeware, shareware and commercial software. In this review, we have described freeware or open-source software that are commonly used for designing therapeutic molecules. Major emphasis will be on software and web services in the field of chemo- or pharmaco-informatics that includes in silico tools used for computing molecular descriptors, inhibitors designing against drug targets, building QSAR models, and ADMET properties.
    Current Topics in Medicinal Chemistry 05/2013; In Press. · 3.70 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Inverse ligand binding prediction utilizes a few protein-ligand (drug) complexes to predict other secondary therapeutic and off-targets of a given drug molecule on a proteomic scale. We adapt two binding site predictors, FINDSITE and SMAP, to perform the inverse predictions and evaluate them on over 30 representative ligands. Use of just one complex allows the identification of other protein targets; the availability of additional complexes improves the results. Both methods offer comparable quality when using three complexes with diverse proteins. SMAP is better when fewer complexes are available, while FINDSITE provides stronger predictions for smaller ligands. We propose a consensus that combines (and outperforms) the two complementary approaches implemented by FINDSITE and SMAP. Most importantly, we demonstrate that these methods successfully find distant targets that belong to structurally different folds compared to the proteins in the input complexes.
    Structure 11/2012; 20(11):1815-22. · 5.99 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: BACKGROUND: The vitamins are important cofactors in various enzymatic-reactions. In past, many inhibitors have been designed against vitamin binding pockets in order to inhibit vitamin-protein interactions. Thus, it is important to identify vitamin interacting residues in a protein. It is possible to detect vitamin-binding pockets on a protein, if its tertiary structure is known. Unfortunately tertiary structures of limited proteins are available. Therefore, it is important to develop in-silico models for predicting vitamin interacting residues in protein from its primary structure. RESULTS: In this study, first we compared protein-interacting residues of vitamins with other ligands using Two Sample Logo (TSL). It was observed that ATP, GTP, NAD, FAD and mannose preferred {G,R,K,S,H}, {G,K,T,S,D,N}, {T,G,Y}, {G,Y,W} and {Y,D,W,N,E} residues respectively, whereas vitamins preferred {Y,F,S,W,T,G,H} residues for the interaction with proteins. Furthermore, compositional information of preferred and non-preferred residues along with patterns-specificity was also observed within different vitamin-classes. Vitamins A, B and B6 preferred {F,I,W,Y,L,V}, {S,Y,G,T,H,W,N,E} and {S,T,G,H,Y,N} interacting residues respectively. It suggested that protein-binding patterns of vitamins are different from other ligands, and motivated us to develop separate predictor for vitamins and their sub-classes. The four different prediction modules, (i) vitamin interacting residues (VIRs), (ii) vitamin-A interacting residues (VAIRs), (iii) vitamin-B interacting residues (VBIRs) and (iv) pyridoxal-5-phosphate (vitamin B6) interacting residues (PLPIRs) have been developed. We applied various classifiers of SVM, BayesNet, NaiveBayes, ComplementNaiveBayes, NaiveBayesMultinomial, RandomForest and IBk etc., as machine learning techniques, using binary and Position-Specific Scoring Matrix (PSSM) features of protein sequences. Finally, we selected best performing SVM modules and obtained highest MCC of 0.53, 0.48, 0.61, 0.81 for VIRs, VAIRs, VBIRs, PLPIRs respectively, using PSSM-based evolutionary information. All the modules developed in this study have been trained and tested on non-redundant datasets and evaluated using five-fold cross-validation technique. The performances were also evaluated on the balanced and different independent datasets. CONCLUSIONS: This study demonstrates that it is possible to predict VIRs, VAIRs, VBIRs and PLPIRs from evolutionary information of protein sequence. In order to provide service to the scientific community, we have developed web-server and standalone software VitaPred (http://crdd.osdd.net/raghava/vitapred/).
    BMC Bioinformatics 02/2013; 14(1):44. · 3.02 Impact Factor

Full-text (4 Sources)

View
45 Downloads
Available from
Oct 10, 2012