Modulation of p53 binding to MDM2: computational studies reveal important roles of Tyr100

#07-01 Matrix, Singapore.
BMC Bioinformatics (Impact Factor: 2.67). 12/2009; 10 Suppl 15(Suppl 15):S6. DOI: 10.1186/1471-2105-10-S15-S6
Source: PubMed

ABSTRACT The tumor suppressor protein p53 is regulated by the ubiquitin ligase MDM2 which down-regulates p53. In tumours with overexpressed MDM2, the p53-MDM2 interaction can be interrupted by a peptide or small molecule to stabilize p53 as a therapeutic strategy. Structural and biochemical/mutagenesis data show that p53 has 3 hydrophobic residues F19, W23 and L26 that embed into the ligand binding pocket of MDM2 which is highly plastic in nature and can modulate its size to accommodate a variety of ligands. This binding pocket is primarily dependent on the orientation of a particular residue, Y100. We have studied the role of the dynamics of Y100 in p53 recognition.
Molecular dynamics simulations show that the Y100 side chain can be in "open" or "closed" states with only the former enabling complex formation. When both p53 and MDM2 are in near native conformations, complex formation is rapid and is driven by the formation of a hydrogen bond between W23 of p53 and L54 of MDM2 or by the embedding of F19 of p53 into MDM2. The transition of Y100 from "closed" to "open" can increase the size of the binding site. Interconversions between these two states can be induced by the N-terminal region of MDM2 or by the conformations of the p53 peptides.
Molecular dynamics simulations have revealed how the binding of p53 to MDM2 is modulated by the conformational mobility of Y100 which is the gatekeeper residue in MDM2. The mobility of this residue can be modulated by the conformations of p53 and the Nterminal lid region of MDM2.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The stereoselective affinity of small-molecule binding to proteins is typically broadly explained in terms of the thermodynamics of the final bound complex. Using Brownian dynamics simulations, we show that the preferential binding of the MDM2 protein to the geometrical isomers of Nutlin-3, an effective anticancer lead that works by inhibiting the interaction between the proteins p53 and MDM2, can be explained by kinetic arguments related to the formation of the MDM2:Nutlin-3 encounter complex. This is a diffusively bound state that forms prior to the final bound complex. We find that the MDM2 protein stereoselectivity for the Nutlin-3a enantiomer stems largely from the destabilization of the encounter complex of its mirror image enantiomer Nutlin-3b, by the K70 residue that is located away from the binding site. On the other hand, the trans Nutlin-3a diastereoisomer exhibits a shorter residence time in the vicinity of MDM2 compared with Nutlin-3a due to destabilization of its encounter complex by the collective interaction of pairs of charged residues on either side of the binding site: Glu25 and Lys51 on one side, and Lys94 and ArgR97 on the other side. This destabilization is largely due to the electrostatic potential of the trans Nutlin-3a isomer being largely positive over extended continuous regions around its structure, which are otherwise well-identified into positive and negative regions in the case of the Nutlin-3a isomer. Such rich insight into the binding processes underlying biological selectivity complements the static view derived from the traditional thermodynamic analysis of the final bound complex. This approach, based on an explicit consideration of the dynamics of molecular association, suggests new avenues for kinetics-based anticancer drug development and discovery.
    Cell cycle (Georgetown, Tex.) 11/2013; 12(24). DOI:10.4161/cc.27273 · 5.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The basic framework of understanding the mechanisms of protein functions is achieved from the knowledge of their structures which can model the molecular recognition. Recent advancement in the structural biology has revealed that in spite of the availability of the structural data, it is nontrivial to predict the mechanism of the molecular recognition which progresses via situation-dependent structural adaptation. The mutual selectivity of protein-protein and protein-ligand interactions often depends on the modulations of conformations empowered by their inherent flexibility, which in turn regulates the function. The mechanism of a protein's function, which used to be explained by the ideas of 'lock and key' has evolved today as the concept of 'induced fit' as well as the 'population shift' models. It is felt that the 'dynamics' is an essential feature to take into account for understanding the mechanism of protein's function. The design principles of therapeutic molecules suffer from the problems of plasticity of the receptors whose binding conformations are accurately not predictable from the prior knowledge of a template structure. On the other hand, flexibility of the receptors provides the opportunity to improve the binding affinity of a ligand by suitable substitution that will maximize the binding by modulating the receptors surface. In this paper, we discuss with example how the protein's flexibility is correlated with its functions in various systems, revealing the importance of its understanding and for making applications. We also highlight the methodological challenges to investigate it computationally and to account for the flexible nature of the molecules in drug design.
    Journal of biomolecular Structure & Dynamics 01/2014; DOI:10.1080/07391102.2013.873002 · 2.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As key negative regulator of the p53 tumour suppressor, Mdm2 is an attractive therapeutic target. Small molecules such as Nutlin have been developed to antagonise Mdm2, resulting in p53-dependent death of tumour cells. We have recently described a mutation in Mdm2 (M62A), which precludes binding of Nutlin, but not p53. This Nutlin-resistant variant is not, however, refractory to binding and inhibition by stapled peptide antagonists targeting the same region of Mdm2. A detailed understanding of how stapled peptides are recalcitrant to Mdm2 mutations conferring Nutlin-resistance will aid in the further development of potent Mdm2 antagonists. Here, we report the 2.00 Å crystal structure of a stapled peptide antagonist bound to Nutlin resistant Mdm2. The stapled peptide relies on an extended network of interactions along the hydrophobic binding cleft of Mdm2 for high affinity binding. Additionally, as seen in other stapled peptide structures, the hydrocarbon staple itself contributes to binding through favourable interactions with Mdm2. The structure highlights the intrinsic plasticity present in both Mdm2 and the hydrocarbon staple moiety, and can be used to guide future iterations of both small molecules and stapled peptides for improved antagonists of Mdm2.
    PLoS ONE 08/2014; 9(8):e104914. DOI:10.1371/journal.pone.0104914 · 3.53 Impact Factor

Full-text (2 Sources)

Available from
Dec 29, 2014