Modulation of p53 binding to MDM2: computational studies reveal important roles of Tyr100.

Bioinformatics Institute (A-STAR), 30 Biopolis Street; #07-01 Matrix, Singapore.
BMC Bioinformatics (Impact Factor: 2.67). 01/2009; 10 Suppl 15:S6. DOI: 10.1186/1471-2105-10-S15-S6
Source: PubMed

ABSTRACT The tumor suppressor protein p53 is regulated by the ubiquitin ligase MDM2 which down-regulates p53. In tumours with overexpressed MDM2, the p53-MDM2 interaction can be interrupted by a peptide or small molecule to stabilize p53 as a therapeutic strategy. Structural and biochemical/mutagenesis data show that p53 has 3 hydrophobic residues F19, W23 and L26 that embed into the ligand binding pocket of MDM2 which is highly plastic in nature and can modulate its size to accommodate a variety of ligands. This binding pocket is primarily dependent on the orientation of a particular residue, Y100. We have studied the role of the dynamics of Y100 in p53 recognition.
Molecular dynamics simulations show that the Y100 side chain can be in "open" or "closed" states with only the former enabling complex formation. When both p53 and MDM2 are in near native conformations, complex formation is rapid and is driven by the formation of a hydrogen bond between W23 of p53 and L54 of MDM2 or by the embedding of F19 of p53 into MDM2. The transition of Y100 from "closed" to "open" can increase the size of the binding site. Interconversions between these two states can be induced by the N-terminal region of MDM2 or by the conformations of the p53 peptides.
Molecular dynamics simulations have revealed how the binding of p53 to MDM2 is modulated by the conformational mobility of Y100 which is the gatekeeper residue in MDM2. The mobility of this residue can be modulated by the conformations of p53 and the Nterminal lid region of MDM2.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The oncoprotein MDM2 (murine double minute 2) negatively regulates the activity and stability of tumor suppressor p53. Inactivation of the MDM2-p53 interaction by potent inhibitors offers new possibilities for anticancer therapy. Molecular dynamics (MD) simulations were performed on three inhibitors-MDM2 complexes to investigate the stability and structural transitions. Simulations show that the backbone of MDM2 maintains stable during the whole time. However, slightly structural changes of inhibitors and MDM2 are observed. Furthermore, the molecular mechanics generalized Born surface area (MM-GBSA) approach was introduced to analyze the interactions between inhibitors and MDM2. The results show that binding of inhibitor pDIQ to MDM2 is significantly stronger than that of pMI and pDI to MDM2. The side chains of residues have more contribution than backbone of residues in energy decomposition. The structure-affinity analyses show that L54, I61, M62, Y67, Q72, H73 and V93 produce important interaction energy with inhibitors. The residue W/Y22' is also very important to the interaction between the inhibitors and MDM2. The three-dimensional structures at different times indicate that the mobility of Y100 influences on the binding of inhibitors to MDM2, and its change has important role in conformations of inhibitors and MDM2.
    Journal of molecular graphics & modelling 10/2013; 46C:132-139. · 2.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The basic framework of understanding the mechanisms of protein functions is achieved from the knowledge of their structures which can model the molecular recognition. Recent advancement in the structural biology has revealed that in spite of the availability of the structural data, it is nontrivial to predict the mechanism of the molecular recognition which progresses via situation-dependent structural adaptation. The mutual selectivity of protein-protein and protein-ligand interactions often depends on the modulations of conformations empowered by their inherent flexibility, which in turn regulates the function. The mechanism of a protein's function, which used to be explained by the ideas of 'lock and key' has evolved today as the concept of 'induced fit' as well as the 'population shift' models. It is felt that the 'dynamics' is an essential feature to take into account for understanding the mechanism of protein's function. The design principles of therapeutic molecules suffer from the problems of plasticity of the receptors whose binding conformations are accurately not predictable from the prior knowledge of a template structure. On the other hand, flexibility of the receptors provides the opportunity to improve the binding affinity of a ligand by suitable substitution that will maximize the binding by modulating the receptors surface. In this paper, we discuss with example how the protein's flexibility is correlated with its functions in various systems, revealing the importance of its understanding and for making applications. We also highlight the methodological challenges to investigate it computationally and to account for the flexible nature of the molecules in drug design.
    Journal of biomolecular Structure & Dynamics 01/2014; · 2.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As key negative regulator of the p53 tumour suppressor, Mdm2 is an attractive therapeutic target. Small molecules such as Nutlin have been developed to antagonise Mdm2, resulting in p53-dependent death of tumour cells. We have recently described a mutation in Mdm2 (M62A), which precludes binding of Nutlin, but not p53. This Nutlin-resistant variant is not, however, refractory to binding and inhibition by stapled peptide antagonists targeting the same region of Mdm2. A detailed understanding of how stapled peptides are recalcitrant to Mdm2 mutations conferring Nutlin-resistance will aid in the further development of potent Mdm2 antagonists. Here, we report the 2.00 Å crystal structure of a stapled peptide antagonist bound to Nutlin resistant Mdm2. The stapled peptide relies on an extended network of interactions along the hydrophobic binding cleft of Mdm2 for high affinity binding. Additionally, as seen in other stapled peptide structures, the hydrocarbon staple itself contributes to binding through favourable interactions with Mdm2. The structure highlights the intrinsic plasticity present in both Mdm2 and the hydrocarbon staple moiety, and can be used to guide future iterations of both small molecules and stapled peptides for improved antagonists of Mdm2.
    PLoS ONE 01/2014; 9(8):e104914. · 3.53 Impact Factor

Full-text (2 Sources)

1 Download
Available from
Dec 29, 2014