Article

Modulation of p53 binding to MDM2: computational studies reveal important roles of Tyr100.

Bioinformatics Institute (A-STAR), 30 Biopolis Street; #07-01 Matrix, Singapore.
BMC Bioinformatics (Impact Factor: 3.02). 01/2009; 10 Suppl 15:S6. DOI: 10.1186/1471-2105-10-S15-S6
Source: PubMed

ABSTRACT The tumor suppressor protein p53 is regulated by the ubiquitin ligase MDM2 which down-regulates p53. In tumours with overexpressed MDM2, the p53-MDM2 interaction can be interrupted by a peptide or small molecule to stabilize p53 as a therapeutic strategy. Structural and biochemical/mutagenesis data show that p53 has 3 hydrophobic residues F19, W23 and L26 that embed into the ligand binding pocket of MDM2 which is highly plastic in nature and can modulate its size to accommodate a variety of ligands. This binding pocket is primarily dependent on the orientation of a particular residue, Y100. We have studied the role of the dynamics of Y100 in p53 recognition.
Molecular dynamics simulations show that the Y100 side chain can be in "open" or "closed" states with only the former enabling complex formation. When both p53 and MDM2 are in near native conformations, complex formation is rapid and is driven by the formation of a hydrogen bond between W23 of p53 and L54 of MDM2 or by the embedding of F19 of p53 into MDM2. The transition of Y100 from "closed" to "open" can increase the size of the binding site. Interconversions between these two states can be induced by the N-terminal region of MDM2 or by the conformations of the p53 peptides.
Molecular dynamics simulations have revealed how the binding of p53 to MDM2 is modulated by the conformational mobility of Y100 which is the gatekeeper residue in MDM2. The mobility of this residue can be modulated by the conformations of p53 and the Nterminal lid region of MDM2.

0 Bookmarks
 · 
87 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inhibition of the interactions between the tumor suppressor protein p53 and its negative regulators, the MDM2 and MDMX oncogenic proteins, is increasingly gaining interest in cancer therapy and drug design. In this study, we carry out molecular docking, molecular dynamics (MD) simulations, and molecular mechanics Poisson-Boltzmann and generalized Born/surface area (MM-PB/GBSA) binding free energy calculations on an active compound 3a and an inactive compound NC-1, which share a common pyrrolopyrimidine-based scaffold. MD simulations and MM-PB/GBSA calculations show that the compound NC-1 may not bind to MDM2 and MDMX, in agreement with the experimental results. Detailed MM-PB/GBSA calculations on the MDM2-3a and MDMX-3a complexes unravel that the binding free energies are similar for the two complexes. Furthermore, the van der Waals energy is the largest component of the binding free energy for both complexes, which indicates that the interactions between the compound 3a and MDM2 and MDMX are dominated by shape complementarity. In addition, the analysis of individual residue contribution and protein-ligand binding mode show that the three functional groups on R₁, R₂, and R₃ of the compound 3a can mimic the spatial orientation of the side chains of Phe19, Trp23, and Leu26 of p53, respectively. The obtained computational results suggest that the compound 3a can act as a dual inhibitor of MDM2-p53 and MDMX-p53 interactions, consistent with the experimental results.
    Journal of molecular graphics & modelling 07/2011; 30:167-78. · 2.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As key negative regulator of the p53 tumour suppressor, Mdm2 is an attractive therapeutic target. Small molecules such as Nutlin have been developed to antagonise Mdm2, resulting in p53-dependent death of tumour cells. We have recently described a mutation in Mdm2 (M62A), which precludes binding of Nutlin, but not p53. This Nutlin-resistant variant is not, however, refractory to binding and inhibition by stapled peptide antagonists targeting the same region of Mdm2. A detailed understanding of how stapled peptides are recalcitrant to Mdm2 mutations conferring Nutlin-resistance will aid in the further development of potent Mdm2 antagonists. Here, we report the 2.00 Å crystal structure of a stapled peptide antagonist bound to Nutlin resistant Mdm2. The stapled peptide relies on an extended network of interactions along the hydrophobic binding cleft of Mdm2 for high affinity binding. Additionally, as seen in other stapled peptide structures, the hydrocarbon staple itself contributes to binding through favourable interactions with Mdm2. The structure highlights the intrinsic plasticity present in both Mdm2 and the hydrocarbon staple moiety, and can be used to guide future iterations of both small molecules and stapled peptides for improved antagonists of Mdm2.
    PLoS ONE 01/2014; 9(8):e104914. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents the problem of identifying whether a received signal at a base station is due to a line-of-sight (LOS) transmission or not (NLOS). This is a first step towards estimating the mobile station's location. We formulate the NLOS identification problem as a binary hypothesis test where the range measurements are modeled as being corrupted by additive noise, with different probability distributions depending on the hypothesis. We solve the binary hypothesis test under several assumptions, proposing appropriate decision criteria
    Vehicular Technology Conference, 1998. VTC 98. 48th IEEE; 06/1998

Full-text

View
1 Download
Available from