Recent advances in otitis media.

Department of Pediatrics, Boston University School of Medicine, Boston, MA, USA.
The Pediatric Infectious Disease Journal (Impact Factor: 3.14). 10/2009; 28(10 Suppl):S133-7. DOI: 10.1097/INF.0b013e3181b6d81a
Source: PubMed

ABSTRACT Otitis media (OM) is a pervasive illness in infants and children, and many children suffer multiple episodes during the first years of life. High rates of acute otitis media (AOM) are reported in developed and emerging countries. Early onset is common in both settings. Recurrent OM is associated with several factors, including early onset of disease, having a sibling with a history of AOM and absence of breast-feeding. Early onset disease has been hypothesized to result from Eustachian tube dysfunction, immunologic naivete and immaturity, and viral upper respiratory tract infection. Nasopharyngeal colonization with bacterial otopathogens increases the likelihood of AOM and the disease is most frequent in children with viral respiratory tract infection colonized with multiple otopathogens (Streptococcus pneumoniae, nontypeable Haemophilus influenzae [NTHi], Moraxella catarrhalis), potentially as a result of inflammation resulting from competition among the bacterial species within the nasopharynx. Epidemiologic observations and studies of pathogenesis suggest that successful strategies for reducing the burden of disease will be best accomplished by targeting multiple viral and/or bacterial pathogens and preventing early onset disease. Guidelines (2004) for the treatment of AOM in children establish a clear hierarchy among the various antibacterials for the treatment of this disease. Failure to achieve early bacterial eradication during antibiotic therapy for AOM increases the clinical failure rates in AOM in young children. Most recurrent AOM episodes occurring within 1 month after successful completion of antibiotic therapy are due to new otopathogens. Failure to eradicate middle ear and/or nasopharyngeal pathogens is associated with higher rates of clinical recurrent AOM, even when the patients show clinical improvement or cure at the end of therapy for the initial episode. Optimal strategy for the prevention of AOM recurrences requires sterilization of the middle ear and eradication of nasopharyngeal carriage of otopathogens during antimicrobial therapy.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: RrgB321, a fusion protein of the three Streptococcus pneumoniae pilus-1 backbone RrgB variants, is protective in vivo against pilus islet 1 (PI-1) positive pneumococci. In addition, antibodies to RrgB321 mediate a complement-dependent opsonophagocytosis of PI-1 positive strains at levels comparable to those obtained with antisera against glycoconjugate vaccines. In the pneumococcus, pilus-1 displays a biphasic expression pattern, with different proportions of two bacterial phenotypes, one expressing and one not expressing the pilus-1. These two populations can be stably separated in vitro giving rise to the enriched high (H) and low (L) pilus expressing populations. In this work we demonstrate that: (i) the opsonophagocytic killing mediated in vitro by RrgB321 antisera is strictly dependent on the pilus expression ratio of the strain used; (ii) during the opsonophagocytosis assay pilus-expressing pneumococci are selectively killed, and (iii) no switch towards the pilus non-expressing phenotype can be observed. Furthermore, in sepsis and pneumonia models, mice immunized with RrgB321 are significantly protected against challenge with either the H or the L pilus-expressing population of strains representative of the three RrgB variants. This suggests that the pilus-1 expression is not down-regulated, and also that the expression of the pilus-1 could be up-regulated in vivo. In conclusion, these data provide evidence that RrgB321 is protective against PI-1 positive strains regardless of their pilus expression level, and support the rationale for the inclusion of this fusion protein into a multi-component protein-based pneumococcal vaccine.
    Vaccine 12/2011; 30(7):1349-56. DOI:10.1016/j.vaccine.2011.12.080
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Outer membrane protein P6 is the subject of investigation as a vaccine antigen to prevent infections caused by nontypeable Haemophilus influenzae, which causes otitis media in children and respiratory tract infections in adults with chronic lung disease. P6 induces protective immune responses in animal models and is the target of potentially protective immune responses in humans. P6 is a 16-kDa lipoprotein that shares homology with the peptidoglycan-associated lipoproteins of gram-negative bacteria and is highly conserved among strains of H. influenzae. To characterize the function of P6, an isogenic mutant was constructed by replacing the P6 gene with a chloramphenicol resistance cassette. The P6 mutant showed altered colony morphology and slower growth in vitro than that of the parent strain. By electron microscopy, the P6 mutant cells demonstrated increased size, variability in size, vesicle formation, and fragility compared to the parent cells. The P6 mutant showed hypersensitivity to selected antibiotics with different mechanisms of action, indicating increased accessibility of the agents to their targets. The P6 mutant was more sensitive to complement-mediated killing by normal human serum. Complementation of the mutation in trans completely or partially restored the phenotypes. We concluded that P6 plays a structural role in maintaining the integrity of the outer membrane by anchoring the outer membrane to the cell wall. The observation that the absence of expression of P6 is detrimental to the cell is a highly desirable feature for a vaccine antigen, supporting further investigation of P6 as a vaccine candidate for H. influenzae.
    Infection and Immunity 10/2006; 74(9):5169-76. DOI:10.1128/IAI.00692-06
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The protein McaP was previously shown to be an adhesin expressed by the Moraxella catarrhalis strain O35E, which also displays esterase and phospholipase B activities (J. M. Timpe et al., Infect. Immun. 71:4341-4350, 2003). In the present study, sequence analysis suggests that McaP is a conventional autotransporter protein that contains a 12-stranded beta-barrel transporter module (amino acids [aa] 383 to 650) linked to a surface-exposed passenger domain exhibiting lipolytic activity (aa 62 to 330). An in-frame deletion removing most of this predicted N-terminal passenger domain was engineered, and Escherichia coli expressing the truncated McaP protein exhibited greatly reduced adherence to A549 human lung epithelial cells compared to E. coli expressing wild-type McaP. Site-directed mutagenesis of a serine residue at position 62 of McaP, predicted to be important for the lipolytic activity of the protein, resulted in loss of hydrolysis of p-nitrophenyl ester of caproate. E. coli expressing this mutated McaP, however, adhered to A549 monolayers at levels greater than recombinant bacteria expressing the wild-type adhesin. These results indicate that the predicted passenger domain of McaP is involved in both the binding and the lipolytic activity of the molecule and demonstrate that the adhesive properties of McaP do not require its lipolytic activity. Sequence analysis of mcaP from eight Moraxella catarrhalis strains revealed that the gene product is highly conserved at the amino acid level (98 to 100% identity), and Western blot analysis demonstrated that a panel of 16 isolates all express McaP. Flow cytometry experiments using antibodies raised against various portions of McaP indicated that its predicted passenger domain as well as transporter module contain surface-exposed epitopes. In addition to binding to the surface of intact bacteria, these antibodies were found to decrease adherence of M. catarrhalis to A549 human lung cells by up to 47% and to reduce binding of recombinant E. coli expressing McaP by 98%. These results suggest that McaP should be considered as a potential vaccine antigen.
    Infection and Immunity 02/2007; 75(1):314-24. DOI:10.1128/IAI.01330-06