Effects of methylmercury exposure on glutathione metabolism, oxidative stress, and chromosomal damage in captive-reared common loon (Gavia immer) chicks.

U.S. Geological Survey, Upper Midwest Environmental Sciences Center, 2630 Fanta Reed Road, La Crosse, WI 54603, USA.
Environmental Pollution (Impact Factor: 3.73). 12/2008; 156(3):732-8. DOI: 10.1016/j.envpol.2008.06.009
Source: PubMed

ABSTRACT We quantified the level of dietary mercury (Hg), delivered as methylmercury chloride (CH3HgCl), associated with negative effects on organ and plasma biochemistries related to glutathione (GSH) metabolism and oxidative stress, and chromosomal damage in captive-reared common loon (Gavia immer) chicks reared from hatch to 105 days. Mercury-associated effects related to oxidative stress and altered glutathione metabolism occurred at 1.2 microg Hg/g and 0.4 microg Hg/g, an ecologically relevant dietary mercury level, but not at 0.08 microg Hg/g. Among the variables that contributed most to dissimilarities in tissue chemistries between control and treatment groups were increased levels of oxidized glutathione (GSSG), GSH peroxidase, and the ratio of GSSG to GSH in brain tissue; increased levels of hepatic GSH; and decreased levels of hepatic glucose-6-phosphate dehydrogenase (G-6-PDH). Our results also suggest that chronic exposure to environmentally relevant dietary Hg levels did not result in statistically significant somatic chromosomal damage in common loon chicks.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 1. Reactive oxygen and nitrogen species can damage biomolecules if these lack sufficient antioxidant protection. Maintaining and up-regulating antioxidant defenses and repair of the damaged molecules require resources that could potentially be allocated to other functions, including lifehistory and signal traits. 2. Identifying the physiological mechanisms causing and counteracting oxidative damage may help to understand evolution of oxidative balance systems from molecular to macroevolutionary levels. This review addresses methodological and statistical problems of measuring and interpreting biomarkers of oxidative stress or damage. 3. A major methodological problem is distinguishing between controlled and uncontrolled processes that can lead either to shifts in dynamic balance of redox potential or cause pathological damage. An ultimate solution to this problem requires establishing links between biomarkers of antioxidant defenses and oxidative damage and components of fitness. 4. Biomarkers of redox balance must correspond to strict technical criteria, most importantly to validated measurement technology. Validation criteria include intrinsic qualities such as specificity, sensitivity, assessment of measurement precision, and knowledge of confounding and modifying factors. 5. The complexity of oxidative balance systems requires that assay choice be informed by statistical analyses incorporating context at biochemical, ecological and evolutionary levels. We review proper application of statistical methods, such as principal components analysis and structural equation modelling, that should help to account for these contexts and isolate the variation of interest across multiple biomarkers simultaneously.
    Functional Ecology 10/2010; 24(5):960-970. · 4.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mercury (Hg) is a widespread contaminant that has been shown to induce a wide range of adverse health effects in birds including reproductive, physiological and neurological impairments. Here we explored the relationship between blood total Hg concentrations ([THg]) and oxidative stress gene induction in the aquatic piscivorous Double-crested Cormorants (Phalacrocorax auritus) using a non-lethal technique, i.e., blood gene expression analysis. P. auritus blood was sampled at five sites across the Great Lakes basin, Ontario, Canada and was analyzed for [THg]. To assess cellular stress, the expression of glutathione peroxidases 1 and 3 (GPX1, GPX3), superoxide dismutase 1 (SOD1), heat-shock protein 70 kd-8 (HSP70-8) and glutathione S-transferase µ3 (GSTM3) were measured in whole blood samples using real-time RT-PCR. Results showed a significantly positive correlation between female blood [THg] and both GPX3 and GSTM3 expression. Different levels of oxidative stress experienced by males and females during the breeding season may be influencing the differential oxidative stress responses to blood [THg] observed in this study. Overall, these results suggest that Hg may lead to oxidative stress as some of the cellular stress-related genes were altered in the blood of female P. auritus and that blood gene expression analysis is a successful approach to assess bird health condition.
    Ecotoxicology 05/2014; · 2.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This review summarizes our current state of knowledge regarding the potential biological effects of mercury (Hg) exposure on fish and wildlife in the Canadian Arctic. Although Hg in most freshwater fish from northern Canada was not sufficiently elevated to be of concern, a few lakes in the Northwest Territories and Nunavut contained fish of certain species (e.g. northern pike, Arctic char) whose muscle Hg concentrations exceeded an estimated threshold range (0.5-1.0μgg(-1) wet weight) within which adverse biological effects begin to occur. Marine fish species generally had substantially lower Hg concentrations than freshwater fish; but the Greenland shark, a long-lived predatory species, had mean muscle Hg concentrations exceeding the threshold range for possible effects on health or reproduction. An examination of recent egg Hg concentrations for marine birds from the Canadian Arctic indicated that mean Hg concentration in ivory gulls from Seymour Island fell within the threshold range associated with adverse effects on reproduction in birds. Mercury concentrations in brain tissue of beluga whales and polar bears were generally lower than levels associated with neurotoxicity in mammals, but were sometimes high enough to cause subtle neurochemical changes that can precede overt neurotoxicity. Harbour seals from western Hudson Bay had elevated mean liver Hg concentrations along with comparatively high muscle Hg concentrations indicating potential health effects from methylmercury (MeHg) exposure on this subpopulation. Because current information is generally insufficient to determine with confidence whether Hg exposure is impacting the health of specific fish or wildlife populations in the Canadian Arctic, biological effects studies should comprise a major focus of future Hg research in the Canadian Arctic. Additionally, studies on cellular interactions between Hg and selenium (Se) are required to better account for potential protective effects of Se on Hg toxicity, especially in large predatory Arctic fish, birds, and mammals.
    Science of The Total Environment 06/2014; · 3.16 Impact Factor


Available from
May 31, 2014