In vitro study of CD133 human stem cells labeled with superparamagnetic iron oxide nanoparticles.

Instituto Israelita de Ensino e Pesquisa Albert Einstein, IIEPAE, São Paulo, Brazil.
Nanomedicine: nanotechnology, biology, and medicine (Impact Factor: 5.98). 12/2008; 4(4):330-9. DOI: 10.1016/j.nano.2008.05.002
Source: PubMed

ABSTRACT Superparamagnetic iron oxide nanoparticles (SPIONs) are applied in stem cell labeling because of their high magnetic susceptibility as compared with ordinary paramagnetic species, their low toxicity, and their ease of magnetic manipulation. The present work is the study of CD133+ stem cell labeling by SPIONs coupled to a specific antibody (AC133), resulting in the antigenic labeling of the CD133+ stem cell, and a method was developed for the quantification of the SPION content per cell, necessary for molecular imaging optimization. Flow cytometry analysis established the efficiency of the selection process and helped determine that the CD133 cells selected by chromatographic affinity express the transmembrane glycoprotein CD133. The presence of antibodies coupled to the SPION, expressed in the cell membrane, was observed by transmission electron microscopy. Quantification of the SPION concentration in the marked cells using the ferromagnetic resonance technique resulted in a value of 1.70 x 10(-13) mol iron (9.5 pg) or 7.0 x 10(6) nanoparticles per cell (the measurement was carried out in a volume of 2 muL containing about 6.16 x 10(5) pg iron, equivalent to 4.5 x 10(11) SPIONs).

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tracking of transplanted stem cells is essential to monitor safety and efficiency of cell-based therapies. Magnetic resonance imaging (MRI) offers a very sensitive, repetitive and non-invasive in vivo detection of magnetically labeled cells but labeling with commercial superparamagnetic iron oxide nanoparticles (SPIONs) is still problematic because of low labeling efficiencies and the need of potentially toxic transfection agents. In this study, new experimental citrate-coated SPIONs and commercial Endorem and Resovist SPIONs were investigated comparatively in terms of in vitro labeling efficiency, effects on stem cell functionality and in vivo MRI visualization. Efficient labeling of human mesenchymal stem cells (MSCs) without transfection agents was only achieved with Citrate SPIONs. Magnetic labeling of human MSCs did not affect cell proliferation, presentation of typical cell surface marker antigens and differentiation into the adipogenic and osteogenic lineages. However, chondrogenic differentiation and chemotaxis were significantly impaired with increasing SPION incorporation. Transplanted SPION-labeled MSCs were visualized in vivo after intramuscular injection in rats by 7T-MRI and were retrieved ex vivo by Prussian Blue and immunohistochemical stainings. Though a careful titration of SPION incorporation, cellular function and MRI visualization is essential, Citrate SPIONs are very efficient intracellular magnetic labels for in vivo stem cell tracking by MRI.
    Biomaterials 03/2012; 33(18):4515-25. DOI:10.1016/j.biomaterials.2012.02.064 · 8.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the 21st century, nanoscience and nanotechnology obtains the world attention due to this revolutionary theory and technical features. Nanoscience and nanotechnology cover the theory and technology of physics, chemistry, medicine, material science, biomedical engineering and biology, therefore, they have no less contribution to science and technology as biotechnology and information technology. Recent years have witnessed the rapid development of China's nanoscience and nanotechnology with widespread influence. It was attended by scientists of the world. Research, development and application of nanotechnology research in China can be summed up in three characteristics: the first, China government in support of sustainable development; the second, significant academic achievements, and the third, a clear consensus on sustainable development for nanoscience and nanotechnology research and development. In this review paper, we discussed the pharmacology and toxicology of nanomedicines, and presented some issues on research and development and application of nanomedicines in the future.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Confirmation and assessment of general applicability of cancer stem cell concept towards solid tumors greatly depends on development of reliable approaches to selectively identify populations of neoplastic cells carrying “stemness” features, such as extensive capacity for self-renewal and ability to undergo a range of differentiation events. This chapter describes such assays as sphere formation, side population isolation and cancer stem cell marker detection and addresses their potential pitfalls. Also discussed are the cell of origin of stem cells and remaining challenges in solid tumor stem cell research. KeywordsBrain–Breast–Cell of origin–Challenges–Colon–Head and neck–Kidney–Liver–Ovary–Pancreas–Prostate–Side population–Skin–Solid tumor–Sphere assay–Stem cell markers
    12/2009: pages 295-326;