Toll-like Receptors Activate Innate and Adaptive Immunity by using Dendritic Cell-Intrinsic and -Extrinsic Mechanisms

Department of Microbiology & Immunology, University of California, San Francisco, CA, 94143, USA.
Immunity (Impact Factor: 19.75). 08/2008; 29(2):272-82. DOI: 10.1016/j.immuni.2008.05.016
Source: PubMed

ABSTRACT Toll-like receptors (TLRs) play prominent roles in initiating immune responses to infection, but their roles in particular cell types in vivo are not established. Here we report the generation of mice selectively lacking the crucial TLR-signaling adaptor MyD88 in dendritic cells (DCs). In these mice, the early production of inflammatory cytokines, especially IL-12, was substantially reduced after TLR stimulation. Whereas the innate interferon-gamma response of natural killer cells and of natural killer T cells and the Th1 polarization of antigen-specific CD4(+) T cells were severely compromised after treatment with a soluble TLR9 ligand, they were largely intact after administration of an aggregated TLR9 ligand. These results demonstrate that the physical form of a TLR ligand affects which cells can respond to it and that DCs and other innate immune cells can respond via TLRs and collaborate in promoting Th1 adaptive immune responses to an aggregated stimulus.

Download full-text


Available from: Baidong Hou, Jul 03, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Low-grade systemic inflammation is often associated with metabolic syndrome, which plays a critical role in the development of the obesity-associated inflammatory diseases, including insulin resistance and atherosclerosis. Here, we investigate how Toll-like receptor-MyD88 signaling in myeloid and endothelial cells coordinately participates in the initiation and progression of high fat diet-induced systemic inflammation and metabolic inflammatory diseases. MyD88 deficiency in myeloid cells inhibits macrophage recruitment to adipose tissue and their switch to an M1-like phenotype. This is accompanied by substantially reduced diet-induced systemic inflammation, insulin resistance, and atherosclerosis. MyD88 deficiency in endothelial cells results in a moderate reduction in diet-induced adipose macrophage infiltration and M1 polarization, selective insulin sensitivity in adipose tissue, and amelioration of spontaneous atherosclerosis. Both in vivo and ex vivo studies suggest that MyD88-dependent GM-CSF production from the endothelial cells might play a critical role in the initiation of obesity-associated inflammation and development of atherosclerosis by priming the monocytes in the adipose and arterial tissues to differentiate into M1-like inflammatory macrophages. Collectively, these results implicate a critical MyD88-dependent interplay between myeloid and endothelial cells in the initiation and progression of obesity-associated inflammatory diseases.
    Journal of Experimental Medicine 04/2014; DOI:10.1084/jem.20131314 · 13.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The intracellular signaling molecule TRAF6 is critical for Toll-like receptor (TLR)-mediated activation of dendritic cells (DCs). We now report that DC-specific deletion of TRAF6 (TRAF6ΔDC) resulted, unexpectedly, in loss of mucosal tolerance, characterized by spontaneous development of T helper 2 (Th2) cells in the lamina propria and eosinophilic enteritis and fibrosis in the small intestine. Loss of tolerance required the presence of gut commensal microbiota but was independent of DC-expressed MyD88. Further, TRAF6ΔDC mice exhibited decreased regulatory T (Treg) cell numbers in the small intestine and diminished induction of iTreg cells in response to model antigen. Evidence suggested that this defect was associated with diminished DC expression of interleukin-2 (IL-2). Finally, we demonstrate that aberrant Th2 cell-associated responses in TRAF6ΔDC mice could be mitigated via restoration of Treg cell activity. Collectively, our findings reveal a role for TRAF6 in directing DC maintenance of intestinal immune tolerance through balanced induction of Treg versus Th2 cell immunity.
    Immunity 06/2013; DOI:10.1016/j.immuni.2013.05.012 · 19.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mammalian intestine is colonized with a diverse community of bacteria that perform many beneficial functions but can threaten host health upon tissue invasion. Epithelial cell-intrinsic innate immune responses are essential to limit the invasion of both commensal and pathogenic bacteria and maintain beneficial host-bacterial relationships; however, little is known about the role of various cellular processes, notably autophagy, in controlling bacterial interactions with the intestinal epithelium in vivo. We demonstrate that intestinal epithelial cell autophagy protects against tissue invasion by both opportunistically invasive commensals and the invasive intestinal pathogen Salmonella Typhimurium. Autophagy is activated following bacterial invasion of epithelial cells through a process requiring epithelial cell-intrinsic signaling via the innate immune adaptor protein MyD88. Additionally, mice deficient in intestinal epithelial cell autophagy exhibit increased dissemination of invasive bacteria to extraintestinal sites. Thus, autophagy is an important epithelial cell-autonomous mechanism of antibacterial defense that protects against dissemination of intestinal bacteria.
    Cell host & microbe 06/2013; 13(6):723-34. DOI:10.1016/j.chom.2013.05.004 · 12.19 Impact Factor