Role of lateral hypothalamic orexin neurons in reward processing and addiction.

Department of Neurosciences, Medical University of South Carolina, Basic Science Building 403, 173 Ashley Avenue, MSC 510, Charleston, SC 29425-5100, USA.
Neuropharmacology (Impact Factor: 4.82). 01/2009; 56 Suppl 1:112-21. DOI: 10.1016/j.neuropharm.2008.06.060
Source: PubMed

ABSTRACT Orexins (also known as hypocretins) are recently discovered neuropeptides made exclusively in hypothalamic neurons that have been shown to be important in narcolepsy/cataplexy and arousal. Here, we conducted behavioral, anatomical and neurophysiological studies that show that a subset of these cells, located specifically in lateral hypothalamus (LH), are involved in reward processing and addictive behaviors. We found that Fos expression in LH orexin neurons varied in proportion to preference for morphine, cocaine or food. This relationship obtained both in drug naïve rats and in animals during protracted morphine withdrawal, when drug preference was elevated but food preference was decreased. Recent studies showed that LH orexin neurons that project to ventral tegmental area (VTA) have greater Fos induction in association with elevated morphine preference during protracted withdrawal than non-VTA-projecting orexin neurons, indicating that the VTA is an important site of action for orexin's role in reward processing. In addition, we found that stimulation of LH orexin neurons, or microinjection of orexin into VTA, reinstated an extinguished morphine preference. Most recently, using a self-administration paradigm we discovered that the Ox1 receptor antagonist SB-334867 (SB) blocks cocaine-seeking induced by discrete or contextual cues, but not by a priming injection of cocaine. Neurophysiological studies revealed that locally applied orexin often augmented responses of VTA dopamine (DA) neurons to activation of the medial prefrontal cortex (mPFC), consistent with the view that orexin facilitates activation of VTA DA neurons by stimulus-reward associations. We also recently showed that orexin in VTA is necessary for learning a morphine place preference. These findings are consistent with results from others showing that orexin facilitates glutamate-mediated responses, and is necessary for glutamate-dependent long-term potentiation, in VTA DA neurons. We surmise from these studies that LH orexin neurons play an important role in reward processing and addiction, and that LH orexin cells are an important input to VTA for behavioral effects associated with reward-paired stimuli.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The neuropeptides orexin-A and orexin-B are produced by one group of neurons located in the lateral hypothalamic/perifornical area. However, the orexins are widely released in entire brain including various central motor control structures. Especially, the loss of orexins has been demonstrated to associate with several motor deficits. Here, we first summarize the present knowledge that describes the anatomical and morphological connections between the orexin system and various central motor control structures. In the next section, the direct influence of orexins on related central motor control structures is reviewed at molecular, cellular, circuitry, and motor activity levels. After the summarization, the characteristic and functional relevance of the orexin system's direct influence on central motor control function are demonstrated and discussed. We also propose a hypothesis as to how the orexin system orchestrates central motor control in a homeostatic regulation manner. Besides, the importance of the orexin system's phasic modulation on related central motor control structures is highlighted in this regulation manner. Finally, a scheme combining the homeostatic regulation of orexin system on central motor control and its effects on other brain functions is presented to discuss the role of orexin system beyond the pure motor activity level, but at the complex behavioral level. Copyright © 2014. Published by Elsevier Ltd.
    Neuroscience & Biobehavioral Reviews 12/2014; 49. DOI:10.1016/j.neubiorev.2014.12.005 · 10.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Extensive evidence suggests that the hypocretins/orexins influence cocaine reinforcement and dopamine signaling via actions at hypocretin receptor 1. By comparison, the involvement of hypocretin receptor 2 in reward and reinforcement processes has received relatively little attention. Thus, although there is some evidence that hypocretin receptor 2 regulates intake of some drugs of abuse, it is currently unclear to what extent hypocretin receptor 2 participates in the regulation of dopamine signaling or cocaine self-administration, particularly under high effort conditions. To address this, we examined the effects of hypocretin receptor 1, and/or hypocretin receptor 2 blockade on dopamine signaling and cocaine reinforcement. We used in vivo fast scan cyclic voltammetry to test the effects of hypocretin antagonists on dopamine signaling in the nucleus accumbens core and a progressive ratio schedule to examine the effects of these antagonists on cocaine self-administration. Results demonstrate that blockade of either hypocretin receptor 1 or both hypocretin receptor 1 and 2 significantly reduces the effects of cocaine on dopamine signaling and decreases the motivation to take cocaine. In contrast, blockade of hypocretin receptor 2 alone had no significant effects on dopamine signaling or self-administration. These findings suggest a differential involvement of the two hypocretin receptors, with hypocretin receptor 1 appearing to be more involved than hypocretin receptor 2 in the regulation of dopamine signaling and cocaine self-administration. When considered with the existing literature, these data support the hypothesis that hypocretins exert a permissive influence on dopamine signaling and motivated behavior via preferential actions on hypocretin receptor 1.
    ACS Chemical Neuroscience 12/2014; 6(1). DOI:10.1021/cn500246j · 4.21 Impact Factor
  • Neuropsychopharmacology 09/2014; 40(4):861-873. DOI:10.1038/npp.2014.260 · 7.83 Impact Factor

Full-text (2 Sources)

Available from
Aug 6, 2014