Article

Deficiency of ribosomal protein S19 during early embryogenesis leads to reduction of erythrocytes in a zebrafish model of Diamond-Blackfan anemia.

Frontier Science Research Center, University of Miyazaki, Miyazaki 889-1692, Japan.
Human Molecular Genetics (Impact Factor: 6.68). 10/2008; 17(20):3204-11. DOI: 10.1093/hmg/ddn216
Source: PubMed

ABSTRACT Ribosomes are responsible for protein synthesis in all cells. Ribosomal protein S19 (RPS19) is one of the 79 ribosomal proteins (RPs) in vertebrates. Heterozygous mutations in RPS19 have been identified in 25% of patients with Diamond-Blackfan anemia (DBA), but the relationship between RPS19 mutations and the pure red-cell aplasia of DBA is unclear. In this study, we developed an RPS19-deficient zebrafish by knocking down rps19 using a Morpholino antisense oligo. The RPS19-deficient animals showed a dramatic decrease in blood cells as well as deformities in the head and tail regions at early developmental stages. These phenotypes were rescued by injection of zebrafish rps19 mRNA, but not by injection of rps19 mRNAs with mutations that have been identified in DBA patients. Our results indicate that rps19 is essential for hematopoietic differentiation during early embryogenesis. The effects were specific to rps19, but knocking down the genes for three other RPs, rpl35, rpl35a and rplp2, produced similar phenotypes, suggesting that these genes might have a common function in zebrafish erythropoiesis. The RPS19-deficient zebrafish will provide a valuable tool for investigating the molecular mechanisms of DBA development in humans.

0 Followers
 · 
86 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diamond Blackfan anemia (DBA) is an inherited bone marrow failure syndrome. As with the other rare inherited bone marrow failure syndromes, the study of these disorders provides important insights into basic biology and, in the case of DBA, ribosome biology; the disruption of which characterizes the disorder. Thus DBA serves as a paradigm for translational medicine in which the efforts of clinicians to manage DBA have informed laboratory scientists who, in turn, have stimulated clinical researchers to utilize scientific discovery to provide improved care. In this review we describe the clinical syndrome Diamond Blackfan anemia and, in particular, we demonstrate how the study of DBA has allowed scientific inquiry to create opportunities for progress in its understanding and treatment.
    Expert Review of Hematology 03/2014; DOI:10.1586/17474086.2014.897923 · 2.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ribosomal biogenesis involves processing of pre-rRNA in assembly with ribosomal proteins (RPs). Deficiency of some RPs impairs processing and causes Diamond Blackfan Anemia (DBA) associated with anemia, congenital malformations, and cancer. p53 mediates many features of DBA but the mechanism of p53 activation remains unclear. Another hallmark of DBA is upregulation of adenosine deaminase (ADA) suggesting changes in nucleotide metabolism. In RP-deficient zebrafish, we found activation of both nucleotide catabolism and biosynthesis consistent with the need to break and replace the faulty rRNA. We also found upregulation of dNTP synthesis, a typical response to replication stress and DNA damage. Both RP-deficient zebrafish and human hematopoietic cells showed activation of the ATR/ATM/CHK1/2/p53 pathway. Other features of RP deficiency included an imbalanced dNTP pool, ATP depletion, and AMPK activation. Replication stress and DNA damage in cultured cells in non-DBA models can be decreased by exogenous nucleosides. Therefore, we treated RP-deficient zebrafish embryos with exogenous nucleosides and observed decreased activation of p53 and AMPK, reduced apoptosis, and rescue of hematopoiesis. Our data suggest that DNA damage response contributes to p53 activation in cellular and zebrafish models of DBA. Furthermore, rescue of RP-deficient zebrafish with exogenous nucleosides suggests that nucleoside supplements may be beneficial in DBA.
    Disease Models and Mechanisms 05/2014; 7(7). DOI:10.1242/dmm.015495 · 5.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ribosomes are essential components of the protein synthesis machinery. The process of ribosome biogenesis is well organized and tightly regulated. Recent studies have shown that ribosomal proteins (RPs) have extraribosomal functions that are involved in cell proliferation, differentiation, apoptosis, DNA repair, and other cellular processes. The dysfunction of RPs has been linked to the development and progression of hematological, metabolic, and cardiovascular diseases and cancer. Perturbation of ribosome biogenesis results in ribosomal stress, which triggers activation of the p53 signaling pathway through RPs–MDM2 interactions, resulting in p53-dependent cell cycle arrest and apoptosis. RPs also regulate cellular functions through p53-independent mechanisms. We herein review the recent advances in several forefronts of RP research, including the understanding of their biological features and roles in regulating cellular functions, maintaining cell homeostasis, and their involvement in the pathogenesis of human diseases. We also highlight the translational potential of this research for the identification of molecular biomarkers, and in the discovery and development of novel treatments for human diseases.
    Medicinal Research Reviews 08/2014; 35(2). DOI:10.1002/med.21327 · 8.13 Impact Factor

Preview

Download
0 Downloads