Article

Environmental enrichment alters neurotrophin levels after fetal alcohol exposure in rats.

Department of Neurological Surgery, University of California, Davis, California 95616, USA.
Alcoholism Clinical and Experimental Research (Impact Factor: 3.42). 10/2008; 32(10):1741-51. DOI: 10.1111/j.1530-0277.2008.00759.x
Source: PubMed

ABSTRACT Prenatal alcohol exposure causes abnormal brain development, leading to behavioral deficits, some of which can be ameliorated by environmental enrichment. As both environmental enrichment and prenatal alcohol exposure can individually alter neurotrophin expression, we studied the interaction of prenatal alcohol and postweaning environmental enrichment on brain neurotrophin levels in rats.
Pregnant rats received alcohol by gavage, 0, 4, or 6 g/kg/d (Zero, Low, or High groups), or no treatment (Naïve group), on gestational days 8 to 20. After weaning on postnatal day 21, offspring were housed for 6 weeks in Isolated, Social, or Enriched conditions. Levels of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) were then measured in frontal cortex, occipital cortex, hippocampus, and cerebellar vermis.
Prenatal alcohol exposure increased NGF levels in frontal cortex (High-dose group) and cerebellar vermis (High- and Low-dose groups); increased BDNF in frontal cortex, occipital cortex and hippocampus (Low-dose groups), and increased NT-3 in hippocampus and cerebellar vermis (High-dose). Environmental enrichment resulted in lower NGF, BDNF, and NT-3 levels in occipital cortex and lower NGF in frontal cortex. The only significant interaction between prenatal alcohol treatment and environment was in cerebellar vermis where NT-3 levels were higher for enriched animals after prenatal alcohol exposure, but not for animals housed under Isolated or Social conditions.
Both prenatal alcohol exposure and postweaning housing conditions alter brain neurotrophin levels, but the effects appear to be largely independent. Although environmental enrichment can improve functional outcomes, these results do not provide strong support for the hypothesis that rearing in a complex environment ameliorates prenatal alcohol effects on brain neurotrophin levels in rats.

0 Bookmarks
 · 
56 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Peritoneal macrophages are used in many studies related to atherosclerosis. In situ, they are non-adherent and upon culturing, they adhere and function as scavengers of modified lipoproteins and dead apoptotic cells. They also produce growth factors, suggesting that they may provide life-supporting function as well. In this study, we propose that macrophage adherence plays a major role in their function and propose a novel concept that non-adherent macrophages are poor scavengers and may delay the process of apoptosis by secretion of growth factors. We analyzed non-adherent and adherent macrophages for changes in receptor expression, growth factor production and function by microarrays, real-time PCR, and western blot analyses. Our results indicate that adherent macrophages have increased expression of scavenger receptors as compared to fresh peritoneal cells. While genes for many growth factors were expressed in both non-adherent and adherent macrophages, the milk fat globule-epidermal growth factor 8 protein (MFG-E8) that recognizes and takes up apoptotic cells was specifically enhanced in non-adherent cells. Furthermore, early apoptotic endothelial cells demonstrated signs of delayed apoptosis when incubated in the presence of peritoneal lavage fluid that was shown to contain MFG-E8. Functional arrays indicated that peritoneal non-adherent macrophages represent a class of macrophages, distinct from either blood monocytes or adherent cultured macrophages. These results suggest that the adherence status of macrophages may play a major role in their functions.
    Atherosclerosis 12/2011; 219(2):475-83. · 3.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The adverse effects of fetal and early postnatal ethanol intoxication on peripheral organs and the central nervous system are well documented. Ocular defects have also been reported in about 90% of children with fetal alcohol syndrome, including microphthalmia, loss of neurons in the retinal ganglion cell (RGC) layer, optic nerve hypoplasia, and dysmyelination. However, little is known about perinatal ethanol effects on retinal cell morphology. Examination of the potential toxic effects of alcohol on the neuron architecture is important because the changes in dendritic geometry and synapse distribution directly affect the organization and functions of neural circuits. Thus, in the present study, estimations of the numbers of neurons in the ganglion cell layer and dorsolateral geniculate nucleus (dLGN), and a detailed analysis of RGC morphology were carried out in transgenic mice exposed to ethanol during the early postnatal period. The study was carried out in male and female transgenic mice expressing yellow fluorescent protein (YFP) controlled by a Thy-1 (thymus cell antigen 1) regulator on a C57 background. Ethanol (3 g/kg/d) was administered to mouse pups by intragastric intubation throughout postnatal days (PDs) 3 to 20. Intubation control (IC) and untreated control (C) groups were included. Blood alcohol concentration was measured in separate groups of pups on PDs 3, 10, and 20 at 4 different time points, 1, 1.5, 2, and 3 hours after the second intubation. Numbers of neurons in the ganglion cell layer and in the dLGN were quantified on PD20 using unbiased stereological procedures. RGC morphology was imaged by confocal microscopy and analyzed using Neurolucida software. Binge-like ethanol exposure in mice during the early postnatal period from PDs 3 to 20 altered RGC morphology and resulted in a significant decrease in the numbers of neurons in the ganglion cell layer and in the dLGN. In the alcohol exposure group, out of 13 morphological parameters examined in RGCs, soma area was significantly reduced and dendritic tortuosity significantly increased. After neonatal exposure to ethanol, a decrease in total dendritic field area and an increase in the mean branch angle were also observed. Interestingly, RGC dendrite elongation and a decrease in the spine density were observed in the IC group, as compared to both ethanol-exposed and pure control subjects. There were no significant effects of alcohol exposure on total retinal area. Early postnatal ethanol exposure affects development of the visual system, reducing the numbers of neurons in the ganglion cell layer and in the dLGN, and altering RGCs' morphology.
    Alcoholism Clinical and Experimental Research 06/2011; 35(11):2063-74. · 3.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The field of behavioral neuroscience has been successful in using an animal model of enriched environments for over five decades to measure the rehabilitative and preventative effects of sensory, cognitive and motor stimulation in animal models. Several key principles of enriched environments match those used in sensory integration therapy, a treatment used for children with neurodevelopmental disorders. This paper reviews the paradigm of environmental enrichment, compares animal models of enriched environments to principles of sensory integration treatment, and discusses applications for the rehabilitation of neurodevelopmental disorders. Based on this review, the essential features in the enriched environment paradigm which should be included in sensory integration treatment are multiple sensory experiences, novelty in the environment, and active engagement in challenging cognitive, sensory, and motor tasks. Use of sensory integration treatment may be most applicable for children with anxiety, hypersensitivity, repetitive behaviors or heightened levels of stress. Additionally, individuals with deficits in social behavior, social participation, or impairments in learning and memory may show gains with this type of treatment.
    Journal of Neurodevelopmental Disorders 09/2010; 2(3):120-32. · 3.45 Impact Factor