The first doubled haploid linkage map for cultivated oat.

Plant Genomics, Biotechnology and Food Research, MTT Agrifood Research Finland, FI-31600 Jokioinen, Finland.
Genome (Impact Factor: 1.56). 08/2008; 51(8):560-9. DOI: 10.1139/G08-040
Source: PubMed

ABSTRACT To date, all linkage maps of hexaploid oat (Avena sativa L.) have been constructed using recombinant inbred lines (RILs). Doubled haploids (DHs), however, have the advantage over RILs of their comprehensive homozygosity. DHs have been used for mapping in several cereal species, but in oats the production of large DH populations has only recently become an option. A linkage map of hexaploid oat was constructed using an anther culture-derived DH population (137 individuals) from the F1 individuals of a cross between the Finnish cultivar 'Aslak' and the Swedish cultivar 'Matilda'. The map is composed of 28 linkage groups containing 625 DNA markers: 375 AFLPs (amplified fragment length polymorphisms), 3 IRAPs (inter-retrotransposon amplified polymorphisms), 12 ISSRs (inter simple sequence repeats), 12 microsatellites, 57 RAPDs (random amplified polymorphic DNAs), 59 REMAPs (retrotransposon-microsatellite amplified polymorphisms), 105 SRAPs (sequence-related amplified polymorphisms), and 2 SNPs (single-nucleotide polymorphisms). The total map size is 1526 cM. Over half of the markers in the map showed distorted segregation, with alleles from 'Aslak' usually prevailing. This is explained by the better performance of 'Aslak' in anther culture. Quantitative trait loci affecting some important quality and agronomic traits are being localized on the map.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Oats are a low input cereal widely grown across the world as both a grain and forage crop. Significant areas of production are in Northern Europe and North America and also in China and Australia. Although a traditional crop in many countries, in the last 50 years there has been a significant shift in oat production as a consequence of changing agricultural production and competition from other cereal crops. Oats are of significant economic importance for human consumption, for livestock feed and increasingly as a source of high value compounds with industrial applications as a consequence of the many unique properties of the oat grain. Traditional use in human diets in many countries has been boosted by the recent recognition of oats as a health food. This is attributed to the presence of β-glucan, the major endospermic cell wall polysaccharide. As a result, there has been an increase in the use of oats and a broadening of oat based products. Increasing knowledge of the composition of the oat grain and its value for the various end-users is leading to new opportunities for the crop. While the value of oats as a break crop in cereal based rotations is widely recognised, maintaining the profitability of the crop whilst meeting the needs of end users is essential for future production. Opportunities exist for plant breeders and agronomists to introduce new oat varieties with tailored agronomic approaches to address this challenge and to ensure the sustainability of oats for the future.
    Food Security 02/2013; 5(1). · 1.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In ferns, intra-gametophytic selfing occurs as a mode of reproduction where two gametes from the same gametophyte form a completely homozygous sporophyte. Intra-gametophytic selfing is considered to be prevented by lethal or deleterious recessive genes in several diploid species. In order to investigate the modes and tempo of selection acting different developmental stages, doubled haploids obtained from intra-gametophytic selfing within isolated gametophytes of a putative F1 hybrid between Osmunda japonica and O. lancea were analyzed with EST_derived molecular markers, and the distribution pattern of transmission ratio distortion (TRD) along linkage map was clarified. As the results, the markers with skewness were clustered in two linkage groups. For the two highly distorted regions, gametophytes and F2 population were also examined. The markers skewed towards O. japonica on a linkage group (LG_2) showed skewness also in gametophytes, and the TRD was generated in the process of spore formation or growth of gametophytes. Also, selection appeared to be operating in the gametophytic stage. The markers on other linkage group (LG_11) showed highest skewness towards O. lancea in doubled haploids, and it was suggested that the segregation of LG_11 were influenced by zygotic lethality or genotypic evaluation and that some deleterious recessive genes exist in LG_11 and reduce the viability of homozygotes with O. japonica alleles. It is very likely that a region of LG_11were responsible for the low frequencies of intra-gametophytic selfing in O. japonica.
    Journal of Plant Research 12/2012; · 2.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mycotoxins caused by Fusarium spp. is a major concern on food and feed safety in oats, although Fusarium head blight (FHB) is often less apparent than in other small grain cereals. Breeding resistant cultivars is an economic and environment-friendly way to reduce toxin content, either by the identification of resistance QTL or phenotypic evaluation. Both are little explored in oats. A recombinant-inbred line population, Hurdal × Z595-7 (HZ595, with 184 lines), was used for QTL mapping and was phenotyped for 3 years. Spawn inoculation was applied and deoxynivalenol (DON) content, FHB severity, days to heading and maturity (DH and DM), and plant height (PH) were measured. The population was genotyped with DArTs, AFLPs, SSRs and selected SNPs, and a linkage map of 1,132 cM was constructed, covering all 21 oat chromosomes. A QTL for DON on chromosome 17A/7C, tentatively designated as Qdon.umb-17A/7C, was detected in all experiments using composite interval mapping, with phenotypic effects of 12.2-26.6 %. In addition, QTL for DON were also found on chromosomes 5C, 9D, 13A, 14D and unknown_3, while a QTL for FHB was found on 11A. Several of the DON/FHB QTL coincided with those for DH, DM and/or PH. A half-sib population of HZ595, Hurdal × Z615-4 (HZ615, with 91 lines), was phenotyped in 2011 for validation of QTL found in HZ595, and Qdon.umb-17A/7C was again localized with a phenotypic effect of 12.4 %. Three SNPs closely linked to Qdon.umb-17A/7C were identified in both populations, and one each for QTL on 5C, 11A and 13A were identified in HZ595. These SNPs, together with those yet to be identified, could be useful in marker-assisted selection to pyramiding resistance QTL.
    Theoretical and Applied Genetics 08/2013; · 3.51 Impact Factor


Available from
May 19, 2014