Article

The E3 ubiquitin ligase Ro52 negatively regulates IFN-beta production post-pathogen recognition by polyubiquitin-mediated degradation of IRF3.

Molecular and Cellular Therapeutics, Research Institute, Royal College of Surgeons in Ireland, Dublin, Ireland.
The Journal of Immunology (Impact Factor: 5.36). 08/2008; 181(3):1780-6. DOI: 10.4049/jimmunol.181.3.1780
Source: PubMed

ABSTRACT Induction of type I IFNs is a fundamental cellular response to both viral and bacterial infection. The role of the transcription factor IRF3 is well established in driving this process. However, equally as important are cellular mechanisms for turning off type I IFN production to limit this response. In this respect, IRF3 has previously been shown to be targeted for ubiquitin-mediated degradation postviral detection to turn off the IFN-beta response. In this study, we provide evidence that the E3 ligase Ro52 (TRIM21) targets IRF3 for degradation post-pathogen recognition receptor activation. We demonstrate that Ro52 interacts with IRF3 via its C-terminal SPRY domain, resulting in the polyubiquitination and proteasomal degradation of the transcription factor. Ro52-mediated IRF3 degradation significantly inhibits IFN-beta promoter activity, an effect that is reversed in the presence of the proteasomal inhibitor MG132. Specific targeting of Ro52 using short hairpin RNA rescues IRF3 degradation following polyI:C-stimulation of HEK293T cells, with a subsequent increase in IFN-beta production. Additionally, shRNA targeting of murine Ro52 enhances the production of the IRF3-dependent chemokine RANTES following Sendai virus infection of murine fibroblasts. Collectively, this demonstrates a novel role for Ro52 in turning off and thus limiting IRF3-dependent type I IFN production by targeting the transcription factor for polyubiquitination and subsequent proteasomal degradation.

0 Bookmarks
 · 
82 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Research on innate immune signaling and regulation has recently focused on pathogen recognition receptors (PRRs) and their signaling pathways. Members of PRRs sense diverse microbial invasions or danger signals, and initiate innate immune signaling pathways, leading to proinflammatory cytokines production, which, in turn, instructs adaptive immune response development. Despite the diverse functions employed by innate immune signaling to respond to a variety of different pathogens, the innate immune response must be tightly regulated. Otherwise, aberrant, uncontrolled immune responses will lead to harmful, or even fatal, consequences. Therefore, it is essential to better discern innate immune signaling and many regulators, controlling various signaling pathways, have been identified. In this review, we focus on the recent advances in our understanding of the activation and regulation of innate immune signaling in the host response to pathogens and cancer.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The search for genetic determinants of alloimmunization in sickle cell disease transfusion recipients was based on two premises: i) that polymorphisms responsible for stronger immune and/or inflammatory responses and hemoglobin β(S) mutation were co-selected by malaria; and ii) that stronger responder status contributes to development of lupus. We found a marker of alloimmunization in the gene encoding for Ro52 protein, also known as Sjögren syndrome antigen 1 (SSA1) and TRIM21. Surprisingly, the nature of the association was opposite of that with lupus; the same variant of a polymorphism (rs660) that was associated with lupus incidence was also associated with induction of tolerance to red blood cell antigens during early childhood. The dual function of Ro52 can explain this apparent contradiction. We propose that other lupus/autoimmunity susceptibility loci may reveal roles of additional molecules in various aspects of alloimmunization induced by transfusion as well as during pregnancy.
    Transfusion Medicine and Hemotherapy 11/2014; 41(6):436-45. DOI:10.1159/000369145 · 2.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: TRIM25, a member of the tripartite motif-containing (TRIM) family of proteins, plays an important role in cell proliferation, protein modification, and the RIG-I-mediated antiviral signaling pathway. However, relatively few studies have investigated the molecular characterization, tissue distribution, and potential function of TRIM25 in chickens. In this study, we cloned the full-length cDNA of chicken TRIM25 that is composed of 2706bp. Sequence analyses revealed that TRIM25 contains a 1902-bp open-reading frame that probably encodes a 633-amino acid protein. Multiple comparisons with deduced amino acid sequences revealed that the RING finger and B30.2 domains of chicken TRIM25 share a high sequence similarity with human and murine TRIM25, indicating that these domains are critical for the function of chicken TRIM25. qPCR assays revealed that TRIM25 is highly expressed in the spleen, thymus and lungs in chickens. Furthermore, we observed that TRIM25 expression was significantly upregulated both in vitro and in vivo following infection with Newcastle disease virus. TRIM25 expression was also significantly upregulated in chicken embryo fibroblasts upon stimulation with poly(I:C) or poly(dA:dT). Taken together, these findings suggest that TRIM25 plays an important role in antiviral signaling pathways in chickens. Copyright © 2015. Published by Elsevier B.V.
    Gene 02/2015; DOI:10.1016/j.gene.2015.02.025 · 2.20 Impact Factor

Full-text

Download
45 Downloads
Available from
May 20, 2014