The E3 ubiquitin ligase Ro52 negatively regulates IFN-beta production post-pathogen recognition by polyubiquitin-mediated degradation of IRF3.

Molecular and Cellular Therapeutics, Research Institute, Royal College of Surgeons in Ireland, Dublin, Ireland.
The Journal of Immunology (Impact Factor: 5.36). 08/2008; 181(3):1780-6. DOI: 10.4049/jimmunol.181.3.1780
Source: PubMed

ABSTRACT Induction of type I IFNs is a fundamental cellular response to both viral and bacterial infection. The role of the transcription factor IRF3 is well established in driving this process. However, equally as important are cellular mechanisms for turning off type I IFN production to limit this response. In this respect, IRF3 has previously been shown to be targeted for ubiquitin-mediated degradation postviral detection to turn off the IFN-beta response. In this study, we provide evidence that the E3 ligase Ro52 (TRIM21) targets IRF3 for degradation post-pathogen recognition receptor activation. We demonstrate that Ro52 interacts with IRF3 via its C-terminal SPRY domain, resulting in the polyubiquitination and proteasomal degradation of the transcription factor. Ro52-mediated IRF3 degradation significantly inhibits IFN-beta promoter activity, an effect that is reversed in the presence of the proteasomal inhibitor MG132. Specific targeting of Ro52 using short hairpin RNA rescues IRF3 degradation following polyI:C-stimulation of HEK293T cells, with a subsequent increase in IFN-beta production. Additionally, shRNA targeting of murine Ro52 enhances the production of the IRF3-dependent chemokine RANTES following Sendai virus infection of murine fibroblasts. Collectively, this demonstrates a novel role for Ro52 in turning off and thus limiting IRF3-dependent type I IFN production by targeting the transcription factor for polyubiquitination and subsequent proteasomal degradation.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The search for genetic determinants of alloimmunization in sickle cell disease transfusion recipients was based on two premises: i) that polymorphisms responsible for stronger immune and/or inflammatory responses and hemoglobin β(S) mutation were co-selected by malaria; and ii) that stronger responder status contributes to development of lupus. We found a marker of alloimmunization in the gene encoding for Ro52 protein, also known as Sjögren syndrome antigen 1 (SSA1) and TRIM21. Surprisingly, the nature of the association was opposite of that with lupus; the same variant of a polymorphism (rs660) that was associated with lupus incidence was also associated with induction of tolerance to red blood cell antigens during early childhood. The dual function of Ro52 can explain this apparent contradiction. We propose that other lupus/autoimmunity susceptibility loci may reveal roles of additional molecules in various aspects of alloimmunization induced by transfusion as well as during pregnancy.
    Transfusion Medicine and Hemotherapy 11/2014; 41(6):436-45. DOI:10.1159/000369145 · 2.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: TRIM25, a member of the tripartite motif-containing (TRIM) family of proteins, plays an important role in cell proliferation, protein modification, and the RIG-I-mediated antiviral signaling pathway. However, relatively few studies have investigated the molecular characterization, tissue distribution, and potential function of TRIM25 in chickens. In this study, we cloned the full-length cDNA of chicken TRIM25 that is composed of 2706bp. Sequence analyses revealed that TRIM25 contains a 1902-bp open-reading frame that probably encodes a 633-amino acid protein. Multiple comparisons with deduced amino acid sequences revealed that the RING finger and B30.2 domains of chicken TRIM25 share a high sequence similarity with human and murine TRIM25, indicating that these domains are critical for the function of chicken TRIM25. qPCR assays revealed that TRIM25 is highly expressed in the spleen, thymus and lungs in chickens. Furthermore, we observed that TRIM25 expression was significantly upregulated both in vitro and in vivo following infection with Newcastle disease virus. TRIM25 expression was also significantly upregulated in chicken embryo fibroblasts upon stimulation with poly(I:C) or poly(dA:dT). Taken together, these findings suggest that TRIM25 plays an important role in antiviral signaling pathways in chickens. Copyright © 2015. Published by Elsevier B.V.
    Gene 02/2015; DOI:10.1016/j.gene.2015.02.025 · 2.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Virus infection leads to the activation of transcription factor IRF3 and subsequent production of type I inteferons, which induce the transcription of various antiviral genes called interferon stimulated genes (ISGs) to eliminate viral infection. IRF3 activation requires phosphorylation, dimerization and nuclear translocation. However, the mechanisms for the termination of IRF3 activation in nucleus are elusive. Here we report the identification of TRIM26 to negatively regulate IFN-β production and antiviral response by targeting nuclear IRF3. TRIM26 bound to IRF3 and promoted its K48-linked polyubiquitination and degradation in nucleus. TRIM26 degraded WT IRF3 and the constitutive active mutant IRF3 5D, but not the phosphorylation deficient mutant IRF3 5A. Furthermore, IRF3 mutant in the Nuclear Localization Signal (NLS), which could not move into nucleus, was not degraded by TRIM26. Importantly, virus infection promoted TRIM26 nuclear translocation, which was required for IRF3 degradation. As a consequence, TRIM26 attenuated IFN-β promoter activation and IFN-β production downstream of TLR3/4, RLR and DNA sensing pathways. TRIM26 transgenic mice showed much less IRF3 activation and IFN-β production, while increased virus replication. Our findings delineate a novel mechanism for the termination of IRF3 activation in nucleus through TRIM26-mediated IRF3 ubiquitination and degradation.
    PLoS Pathogens 03/2015; 11(3):e1004726. DOI:10.1371/journal.ppat.1004726 · 8.06 Impact Factor


Available from
May 20, 2014