Article

Review. Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction.

Department of Experimental Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, UK.
Philosophical Transactions of The Royal Society B Biological Sciences (Impact Factor: 6.31). 10/2008; 363(1507):3125-35. DOI: 10.1098/rstb.2008.0089
Source: PubMed

ABSTRACT We hypothesize that drug addiction can be viewed as the endpoint of a series of transitions from initial voluntary drug use through the loss of control over this behaviour, such that it becomes habitual and ultimately compulsive. We describe evidence that the switch from controlled to compulsive drug seeking represents a transition at the neural level from prefrontal cortical to striatal control over drug-seeking and drug-taking behaviours as well as a progression from ventral to more dorsal domains of the striatum, mediated by its serially interconnecting dopaminergic circuitry. These neural transitions depend upon the neuroplasticity induced by chronic self-administration of drugs in both cortical and striatal structures, including long-lasting changes that are the consequence of toxic drug effects. We further summarize evidence showing that impulsivity, a spontaneously occurring behavioural tendency in outbred rats that is associated with low dopamine D2/3 receptors in the nucleus accumbens, predicts both the propensity to escalate cocaine intake and the switch to compulsive drug seeking and addiction.

Full-text

Available from: Jeffrey W Dalley, May 27, 2015
0 Followers
 · 
98 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Eating disorders appear to be caused by a complex interaction between environmental and genetic factors, and compulsive eating in response to adverse circumstances characterizes many eating disorders. We compared compulsion-like eating in the form of conditioned suppression of palatable food-seeking in adverse situations in stressed C57BL/6J and DBA/2J mice, two well-characterized inbred strains, to determine the influence of gene-environment interplay on this behavioral phenotype. Moreover, we tested the hypothesis that low accumbal D2 receptor (R) availability is a genetic risk factor of food compulsion-like behavior and that environmental conditions that induce compulsive eating alter D2R expression in the striatum. To this end, we measured D1R and D2R expression in the striatum and D1R, D2R and α 1R levels in the medial prefrontal cortex, respectively, by western blot. Exposure to environmental conditions induces compulsion-like eating behavior, depending on genetic background. This behavioral pattern is linked to decreased availability of accumbal D2R. Moreover, exposure to certain environmental conditions upregulates D2R and downregulates α 1R in the striatum and medial prefrontal cortex, respectively, of compulsive animals. These findings confirm the function of gene-environment interplay in the manifestation of compulsive eating and support the hypothesis that low accumbal D2R availability is a “constitutive” genetic risk factor for compulsion-like eating behavior. Finally, D2R upregulation and α1R downregulation in the striatum and medial prefrontal cortex, respectively, are potential neuroadaptive responses that parallel the shift from motivated to compulsive eating.
    PLoS ONE 03/2015; 10(3). DOI:10.1371/journal.pone.0120191 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Drug addiction is a chronic, relapsing brain disorder. The identification of biomarkers that render individuals vulnerable for the transition from occasional drug use to addiction is of key importance to develop early intervention strategies. The aim of the present study was to prospectively assess brain structural markers for escalating drug use in two independent samples of occasional amphetamine-type stimulant users. At baseline occasional users of amphetamine and 3,4-methylenedioxymethamphetamine (cumulative lifetime use ≤10 units) underwent structural brain imaging and were followed up at 12 months and 24 months (Study 1, n = 38; Study 2, n = 28). Structural vulnerability markers for escalating amphetamine-type drug use were examined by comparing baseline grey matter volumes of participants who increased use with those who maintained or reduced use during the follow-up period. Participants in both samples who subsequently increased amphetamine-type drugs use displayed smaller medial prefrontal cortex volumes and, additionally, in the basolateral amygdala (Study 1) and dorsal striatum (Study 2). In both samples the baseline volumes were significantly negatively correlated with stimulant use during the subsequent 12 and 24 months. Additional multiple regression analyses on the pooled data sets revealed some evidence of a compound-specific association between the baseline volume of the left basolateral amygdala and the subsequent use of amphetamine. These findings indicate that smaller brain volumes in fronto-striato-limbic regions implicated in impulsivity and decision-making might render an individual vulnerable for the transition from occasional to escalating amphetamine-type stimulant use. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
    Brain 05/2015; DOI:10.1093/brain/awv113 · 10.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A better understanding of the neurobiological factors that contribute to relapse to smoking is needed for the development of efficacious smoking cessation medications. Reinstatement procedures allow the preclinical assessment of several factors that contribute to relapse in humans, including re-exposure to nicotine via tobacco smoking and the presentation of stimuli that were previously associated with nicotine administration (i.e., conditioned stimuli). This review provides an integrated discussion of the results of animal studies that used reinstatement procedures to assess the efficacy of pharmacologically targeting various neurotransmitter systems in attenuating the cue- and nicotine-induced reinstatement of nicotine seeking. The results of these animal studies have increased our understanding of the neurobiological processes that mediate the conditioned effects of stimuli that trigger reinstatement to nicotine seeking. Thus, these findings provide important insights into the neurobiological substrates that modulate relapse to tobacco smoking in humans and the ongoing search for novel efficacious smoking cessation medications.