Article

Regional body fat distribution and metabolic profile in postmenopausal women.

Institute of Nutraceuticals and Functional Foods, Laval University, Québec QC, Canada G1K 7P4.
Metabolism: clinical and experimental (Impact Factor: 3.1). 08/2008; 57(8):1101-7. DOI: 10.1016/j.metabol.2008.03.015
Source: PubMed

ABSTRACT The aim of the study was to examine how body fat distribution variables were associated with metabolic parameters in a sample of 113 postmenopausal women not receiving hormone therapy (56.9 +/- 4.4 years, 28.4 +/- 5.1 kg/m(2)). Body fat distribution variables (visceral adipose tissue [AT], subcutaneous AT, and total midthigh AT) were measured using computed tomography; body fat mass was assessed by hydrostatic weighing; insulin sensitivity was determined with the euglycemic-hyperinsulinemic clamp; fasting plasma glucose (FPG) and 2-hour plasma glucose (2hPG) concentrations were measured by a 75-g oral glucose load; and (high-sensitivity) C-reactive protein (hs-CRP) was measured using a highly sensitive assay. After controlling for fat mass, visceral AT was positively associated with plasma triglyceride, hs-CRP, FPG, and 2hPG, and negatively associated with high-density lipoprotein cholesterol (HDL-C) and insulin sensitivity. Total midthigh AT was negatively associated with apolipoprotein B, FPG, and 2hPG, and positively associated with insulin sensitivity. Stepwise multiple regression analyses including abdominal visceral AT, subcutaneous AT and total midthigh AT as independent variables showed that abdominal visceral AT best predicted the variance in plasma triglyceride, HDL-C, low-density lipoprotein peak particle size, hs-CRP, FPG, 2hPG, and insulin sensitivity. Abdominal subcutaneous AT was a significant predictor of only insulin sensitivity, whereas total midthigh AT predicted HDL-C, low-density lipoprotein peak particle size, and apolipoprotein B. These multivariate analyses also indicated that total midthigh AT was favorably related to these outcomes, whereas abdominal visceral AT and subcutaneous AT were unfavorably related. These results confirmed that abdominal visceral fat is a critical correlate of metabolic parameters in postmenopausal women. In addition, a higher proportion of AT located in the total midthigh depot is associated with a favorable metabolic profile.

0 Bookmarks
 · 
75 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background. Choice of adiposity measure may be important in the evaluation of relationships between adiposity and risk markers for cardiovascular disease and diabetes. Aim. We explored the strengths of risk marker associations with BMI, a simple measure of adiposity, and with measures provided by skinfold thicknesses and dual energy X-ray absorptiometry (DXA). Subjects and Methods. We evaluated in three subgroups of white males (n = 156-349), participating in a health screening program, the strengths of relationship between measures of total and regional adiposity and risk markers relating to blood pressure, lipids and lipoproteins, insulin sensitivity, and subclinical inflammation. Results. Independent of age, smoking, alcohol intake, and exercise, the strongest correlations with adiposity measures were seen with serum triglyceride concentrations and indices of insulin sensitivity, with strengths of association showing little difference between BMI and skinfold and DXA measures of total and percent body fat (R = 0.20-0.46, P < 0.01). Significant but weaker associations with adiposity were seen for serum HDL cholesterol and only relatively inconsistent associations with adiposity for total and LDL cholesterol and indices of subclinical inflammation. Conclusions. BMI can account for variation in risk markers in white males as well as more sophisticated measures derived from skinfold thickness measurements or DXA scanning.
    Disease markers 01/2013; 35(6):753-764. · 2.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lipolysis is the process by which triglycerides are hydrolyzed to free fatty acids (FFA) and glycerol. In adipocytes, this is achieved by the sequential action of Adipose Triglyceride Lipase (ATGL), Hormone Sensitive Lipase (HSL) and Monoglyceride Lipase (MGL). The activity in the lipolytic pathway is tightly regulated by hormonal and nutritional factors. Under conditions of negative energy balance such as fasting and exercise, stimulation of lipolysis results in a profound increase in FFA release from adipose tissue. This response is crucial in order to provide the organism with a sufficient supply of substrate for oxidative metabolism. However, failure to efficiently suppress lipolysis when FFA demands are low can have serious metabolic consequences and is believed to be a key mechanism in the development of type 2 diabetes in obesity. Since the discovery of ATGL in 2004, substantial progress has been made in the delineation of the remarkable complexity of the regulatory network controlling adipocyte lipolysis. Notably, regulatory mechanisms have been identified on multiple levels of the lipolytic pathway, including gene transcription and translation, post-translational modifications, intracellular localization, protein-protein interactions, and protein stability/degradation. Here, we provide an overview of the recent advances in the field of adipose tissue lipolysis with particular focus on the molecular regulation of the two main lipases, ATGL and HSL and the intracellular and extracellular signals affecting their activity.
    Journal of Molecular Endocrinology 02/2014; · 3.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) are non-coding small RNA ∼22 nucleotides in length that can regulate the expression of a wide range of coding genes at the post-transcriptional level. Visceral adipose tissues (VATs) and subcutaneous adipose tissues (SATs), the two main fat compartments in mammals, are anatomically, physiologically, metabolically, and clinically distinct. Various studies of adipose tissues have focused mainly on DNA methylation, and mRNA and protein expression, nonetheless little research sheds directly light on the miRNA transcriptome differences between these two distinct adipose tissue types. Here, we present a comprehensive investigation of miRNA transcriptomes across six variant porcine adipose tissues by small RNA-sequencing. We identified 219 known porcine miRNAs, 97 novel miRNA*s, and 124 miRNAs that are conserved to other mammals. A set of universally abundant miRNAs (i.e., miR-148a-3p, miR-143-3p, miR-27b-3p, miR-let-7a-1-5p, and miR-let-7f-5p) across the distinct adipose tissues was found. This set of miRNAs may play important housekeeping roles that are involved in adipogenesis. Clustering analysis indicated significant variations in miRNA expression between the VATs and SATs, and highlighted the role of the greater omentum in responding to potential metabolic risk because of the observed enrichment in this tissue of the immune- and inflammation-related miRNAs, such as the members of miR-17-92 cluster and miR-181 family. Differential expression of the miRNAs between the VATs and SATs, and miRNA target prediction analysis revealed that the VATs-specific enriched miRNAs were associated mainly with immune and inflammation responses. In summary, the differences of miRNA expression between the VATs and SATs revealed some of their intrinsic differences and indicated that the VATs might be closely associated with increased risk of metabolic disorders.
    PLoS ONE 01/2013; 8(11):e80041. · 3.53 Impact Factor