Effects of lactone derivatives on aromatase (CYP19) activity in H295R human adrenocortical and (anti)androgenicity in transfected LNCaP human prostate cancer cells

INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, Canada.
European Journal of Pharmacology (Impact Factor: 2.53). 09/2008; 593(1-3):92-8. DOI: 10.1016/j.ejphar.2008.06.085
Source: PubMed


Certain lactone-containing secondary plant metabolites display potent biological effects, including anti-tumor activities. This is of particular interest as these compounds appear effective against hormone-dependent cancers, such as those of breast and prostate, of which the incidence is on the rise. The mechanisms of anti-tumor action of these compounds are largely unknown. Thirteen synthetic lactone derivatives were evaluated for effects on aromatase activity and mRNA expression in H295R human adrenocortical carcinoma cells. Aromatase (CYP19) is a key enzyme in the synthesis of estrogens from androgens. Over-expression has been associated with increased risk of developing estrogen-dependent mammary tumors, and aromatase inhibitors are effective in their treatment. The androgen receptor is implicated in mediating hormone-dependent prostate tumor growth, and androgen antagonists are effective in the treatment of these cancers. Thus the (anti)androgenic effects of the lactones were also assessed in LNCaP human prostate cancer cells transfected with human androgen receptor and an androgen receptor-responsive luciferase reporter gene. Cells were exposed to lactones (0.1-100 microM) dissolved in dimethyl sulfoxide (0.1% in medium) for 24 h prior to measurement of aromatase activity using a tritiated water-release assay. Three (competitive) inhibitors of aromatase activity were identified (potencies in decreasing order): 3-(3,4-dimethoxy-phenyl)-4-(4-methoxy-phenyl)-5H-furan-2-one (CRI-7; IC(50)=1 microM; K(i)=1.0 microM), 3,4-bis-(3,4-dimethoxy-phenyl)-5H-furan-2-one (CRI-8; IC(50)=2 microM; K(i)=1.2 microM) and 3-(3,4-dimethoxy-phenyl)-4-(3,4,5-trimethoxy-phenyl)-5H-furan-2-one (CRI-9; IC(50)=3 microM; K(i)=6.8 microM). Several concentration-dependent inducers of aromatase (>2fold) were also identified (CRI-1, CRI-4 or Vioxx, CRI-11 and CRI-13). These lactones also induced pII promoter-specific CYP19 transcripts. In transfected LNCaP cells, the three aromatase inhibitors CRI-7, 8 and 9 demonstrated concentration-dependent anti-androgenicity above 0.1 microM in the presence of either 0.1 nM of dihydrotestosterone or the synthetic androgen R1881. The other lactones showed no consistent pro- or anti-androgenic effects in these LNCaP cells. Lactone moiety-containing molecules may form the structural basis for the development of potent drugs effective against hormone-dependent cancers.

Download full-text


Available from: J Thomas Sanderson, Oct 14, 2015
51 Reads
  • Source
    • "A cell-free control using only medium was included in each experiment to correct for enzyme-independent tritiated water release. Further steps were as reported previously [22] [23]. Aromatase activities (pmole/min/mg cellular protein) were expressed as percent of control (DMSO) activity. "
  • Source
    • "A cell-free control using only medium was included in each experiment to correct for enzyme-independent tritiated water release. Further steps were as reported previously [22] [23]. Aromatase activities (pmole/min/mg cellular protein) were expressed as percent of control (DMSO) activity. "
    [Show abstract] [Hide abstract]
    ABSTRACT: It is known that serotonin can influence the production and function of sex hormones, such as estrogens. Estrogens are critical for maintenance of pregnancy and regulate placental and fetal development. The key enzyme controlling estrogens synthesis during pregnancy is placental aromatase (CYP19). To better understand the regulation of placental aromatase, this study determined whether serotonin is involved in the regulation of this enzyme. BeWo and JEG-3 choriocarcinoma cells were used as models of the human placental trophoblast to evaluate the effects of serotonin and selective 5-HT(2A) receptor agonists on CYP19 activity and expression. Serotonin and selective 5-HT(2A) receptor agonists as well as PKC activation increased aromatase activity and expression in BeWo and JEG-3 cells. Dexamethasone, which regulates aromatase expression via JAK/STAT activation in certain tissues, had no effect. Increased CYP19 gene transcription by 5-HT(2A) receptor and PKC stimulation was mediated by activation of the placental I.1 aromatase promoter. This study shows that the serotonergic system modulates placental aromatase expression, which would result in altered estrogens biosynthesis in trophoblast cells. Future detailed studies of serotonin-estrogen interactions in placenta are crucial for an improved understanding of the endo-, para- and autocrine role of serotonin during pregnancy and fetal development.
    Placenta 06/2011; 32(9):651-6. DOI:10.1016/j.placenta.2011.06.003 · 2.71 Impact Factor
  • Source
    • "[35] "
    [Show abstract] [Hide abstract]
    ABSTRACT: Interference of exogenous chemicals with the aromatase enzyme can be useful as a tool to identify chemicals that could act either chemopreventive for hormone-dependent cancer or adverse endocrine disruptive. Aromatase is the key enzyme in the biosynthesis of steroids, as it converts androgens to estrogens. Certain flavonoids, plant derived chemicals, are known catalytic aromatase inhibitors. Various systems are in use to test aromatase inhibitory properties of compounds. Commonly used are microsomes derived from ovary or placental tissue characterized by high aromatase activity. To a lesser extent whole cell systems are used and specifically cell systems that are potential target tissue in breast cancer development. In this study aromatase inhibitory properties of fadrozole, 8-prenylnaringenin and a synthetic lactone (TM-7) were determined in human placental microsomes and in human primary breast fibroblasts. In addition, apigenin, chrysin, naringenin and two synthetic lactones (TM-8 and TM-9) were tested in human microsomes only. Comparison of the aromatase inhibitory potencies of these compounds between the two test systems showed that the measurement of aromatase inhibition in human placental microsomes is a good predictor of aromatase inhibition in human breast fibroblasts.
    Toxicology and Applied Pharmacology 06/2008; 228(3):269-76. DOI:10.1016/j.taap.2007.12.007 · 3.71 Impact Factor
Show more