Anatomic abnormalities of the anterior cingulate cortex before psychosis onset: an MRI study of ultra-high-risk individuals.

Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne, Carlton South, Victoria, Australia.
Biological psychiatry (Impact Factor: 9.47). 11/2008; 64(9):758-65. DOI: 10.1016/j.biopsych.2008.05.032
Source: PubMed

ABSTRACT Abnormalities of the anterior cingulate cortex (ACC) are frequently implicated in the pathophysiology of psychotic disorders, but whether such changes are apparent before psychosis onset remains unclear. In this study, we characterized prepsychotic ACC abnormalities in a sample of individuals at ultra-high-risk (UHR) for psychosis.
Participants underwent baseline magnetic resonance imaging and were followed-up over 12-24 months to ascertain diagnostic outcomes. Baseline ACC morphometry was then compared between UHR individuals who developed psychosis (UHR-P; n = 35), those who did not (UHR-NP; n = 35), and healthy control subjects (n = 33).
Relative to control subjects, UHR-P individuals displayed bilateral thinning of a rostral paralimbic ACC region that was negatively correlated with negative symptoms, whereas UHR-NP individuals displayed a relative thickening of dorsal and rostral limbic areas that was correlated with anxiety ratings. Baseline ACC differences between the two UHR groups predicted time to psychosis onset, independently of symptomatology. Subdiagnostic comparisons revealed that changes in the UHR-P group were driven by individuals subsequently diagnosed with a schizophrenia spectrum psychosis.
These findings indicate that anatomic abnormalities of the ACC precede psychosis onset and that baseline ACC differences distinguish between UHR individuals who do and do not subsequently develop frank psychosis. They also indicate that prepsychotic changes are relatively specific to individuals who develop a schizophrenia spectrum disorder, suggesting they may represent a diagnostically specific risk marker.


Available from: Murat Yucel, Apr 26, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent data suggest that treatment with antipsychotics is associated with reductions in cortical gray matter in patients with schizophrenia. These findings have led to concerns about the effect of antipsychotic treatment on brain structure and function; however, no studies to date have measured cortical function directly in individuals with schizophrenia and shown antipsychotic-related reductions of gray matter. To examine the effects of antipsychotics on brain structure and function in patients with first-episode schizophrenia, using cortical thickness measurements and administration of the AX version of the Continuous Performance Task (AX-CPT) during event-related functional magnetic resonance imaging. This case-control cross-sectional study was conducted at the Imaging Research Center of the University of California, Davis, from November 2004 through July 2012. Participants were recruited on admission into the Early Diagnosis and Preventive Treatment Clinic, an outpatient clinic specializing in first-episode psychosis. Patients with first-episode schizophrenia who received atypical antipsychotics (medicated patient group) (n = 23) and those who received no antipsychotics (unmedicated patient group) (n = 22) and healthy control participants (n = 37) underwent functional magnetic resonance imaging using a 1.5-T scanner. Behavioral performance was measured by trial accuracy, reaction time, and d'-context score. Voxelwise statistical parametric maps tested differences in functional activity during the AX-CPT, and vertexwise maps of cortical thickness tested differences in cortical thickness across the whole brain. Significant cortical thinning was identified in the medicated patient group relative to the control group in prefrontal (mean reduction [MR], 0.27 mm; P < .001), temporal (MR, 0.34 mm; P = .02), parietal (MR, 0.21 mm; P = .001), and occipital (MR, 0.24 mm; P = .001) cortices. The unmedicated patient group showed no significant cortical thickness differences from the control group after clusterwise correction. The medicated patient group showed thinner cortex compared with the unmedicated patient group in the dorsolateral prefrontal cortex (DLPFC) (MR, 0.26 mm; P = .001) and temporal cortex (MR, 0.33 mm; P = .047). During the AX-CPT, both patient groups showed reduced DLPFC activity compared with the control group (P = .02 compared with the medicated group and P < .001 compared with the unmedicated group). However, the medicated patient group demonstrated higher DLPFC activation (P = .02) and better behavioral performance (P = .02) than the unmedicated patient group. These findings highlight the complex relationship between antipsychotic treatment and the structural, functional, and behavioral deficits repeatedly identified in schizophrenia. Although short-term treatment with antipsychotics was associated with prefrontal cortical thinning, treatment was also associated with better cognitive control and increased prefrontal functional activity. This study adds important context to the growing literature on the effects of antipsychotics on the brain and suggests caution in interpreting neuroanatomical changes as being related to a potentially adverse effect on brain function.
    JAMA Psychiatry 01/2015; DOI:10.1001/jamapsychiatry.2014.2178 · 12.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stress and abnormal hypothalamic-pituitary-adrenal axis functioning have been implicated in the early phase of psychosis and may partly explain reported changes in brain structure. This study used magnetic resonance imaging to investigate whether biological measures of stress were related to brain structure at baseline and to structural changes over the first 12 weeks of treatment in first episode patients (n=22) compared with matched healthy controls (n=22). At baseline, no significant group differences in biological measures of stress, cortical thickness or hippocampal volume were observed, but a significantly stronger relationship between baseline levels of cortisol and smaller white matter volumes of the cuneus and anterior cingulate was found in patients compared with controls. Over the first 12 weeks of treatment, patients showed a significant reduction in thickness of the posterior cingulate compared with controls. Patients also showed a significant positive relationship between baseline cortisol and increases in hippocampal volume over time, suggestive of brain swelling in association with psychotic exacerbation, while no such relationship was observed in controls. The current findings provide some support for the involvement of stress mechanisms in the pathophysiology of early psychosis, but the changes are subtle and warrant further investigation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
    Psychiatry Research Neuroimaging 11/2014; 231(2). DOI:10.1016/j.pscychresns.2014.11.004 · 2.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective: Although recent studies have revealed regional cortical thinning in patients with schizophrenia, it is not clear whether cortical thinning reflects a genetic liability for schizophrenia. The present study investigated the change of cortical thickness in subjects at genetic high risk (GHR) for schizophrenia with a relatively high genetic loading compared with healthy controls (HC) and patients with schizophrenia. The effect of genetic loading on cortical thinning was also measured by comparing GHR subgroups according to the levels of genetic loading. Methods: Cortical thickness was measured by the Constrained Laplacian-based Automated Segmentation with Proximities algorithm using 1.5-T structural MRI scans. The cortical thickness of the subjects at GHR (n = 31) was compared with that of HC (n = 29) and patients with schizophrenia (n = 31). We then compared the cortical thickness of the GHR subgroups according to the number of first-degree relatives with schizophrenia to measure the effect of genetic loading. Results: Relative to HC, GHR subjects showed significant cortical thinning in the right anterior cingulate cortex (ACC), left paracingulate and posterior cingulate regions; bilateral frontal regions including frontal pole and ventromedial prefrontal cortex; bilateral temporal regions including the left parahippocampal gyrus; and bilateral inferior parietal and occipital regions; however, patients with schizophrenia showed more widespread cortical thinning in the fronto-temporo-parietal region. GHR subjects who had two or more first-degree relatives with schizophrenia showed a greater reduction in cortical thickness in the right ACC and in the left paracingulate cortex than did those who had only one first-degree relative with schizophrenia. Conclusion: Our findings suggest that the level of genetic loading may have a dose-dependent effect on cortical thinning in the right ACC and in the left paracingulate cortex and that cortical thinning in GHR subjects may represent neurodevelopmental alterations that result from genetic liability for schizophrenia.
    Schizophrenia Research 11/2012; 141(2-3):197-203. DOI:10.1016/j.schres.2012.08.028 · 4.43 Impact Factor