Role of hippocampal sodium channel Nav1.6 in kindling epileptogenesis

Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA.
Epilepsia (Impact Factor: 4.58). 01/2009; 50(1):44-55. DOI: 10.1111/j.1528-1167.2008.01710.x
Source: PubMed

ABSTRACT Central nervous system plasticity is essential for normal function, but can also reinforce abnormal network behavior, leading to epilepsy and other disorders. The role of altered ion channel expression in abnormal plasticity has not been thoroughly investigated. Nav1.6 is the most abundantly expressed sodium channel in the nervous system. Because of its distribution in the cell body and axon initial segment, Nav1.6 is crucial for action potential generation. The goal of the present study was to investigate the possible role of changes in Nav1.6 expression in abnormal, activity-dependent plasticity of hippocampal circuits.
We studied kindling, a form of abnormal activity-dependent facilitation. We investigated: (1) sodium channel protein expression by immunocytochemistry and sodium channel messenger RNA (mRNA) by in situ hybridization, (2) sodium current by patch clamp recordings, and (3) rate of kindling by analysis of seizure behavior. The initiation, development, and expression of kindling in wild-type mice were compared to Nav1.6 +/-med(tg) mice, which have reduced expression of Nav1.6.
We found that kindling was associated with increased expression of Nav1.6 protein and mRNA, which occurred selectively in hippocampal CA3 neurons. Hippocampal CA3 neurons also showed increased persistent sodium current in kindled animals compared to sham-kindled controls. Conversely, Nav1.6 +/-med(tg) mice resisted the initiation and development of kindling.
These findings suggest an important mechanism for enhanced excitability, in which Nav1.6 may participate in a self-reinforcing cycle of activity-dependent facilitation in the hippocampus. This mechanism could contribute to both normal hippocampal function and to epilepsy and other common nervous system disorders.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in RNA‑binding Fox 1 (RBFOX1) are known to be associated with neurodevelopmental disorders including epilepsy, mental retardation and autism spectrum disorder. The deletion of the Rbfox1 gene in mice has been shown to result in heightened susceptibility to seizures. However, other studies have revealed mutations or the downregulation of RBFOX1 in specimens obtained from patients with epilepsy or malformations of cortical development (MCD). Generally, the expression of RBFOX1 varies according to tissue type. In this study, we demonstrated the upregulation of RBFOX1 protein in the cortex of patients with MCD and intractable epilepsy. Electrophysiological recordings of cultured rat cortical neurons with increased Rbfox1 expression also revealed a significantly increased amplitude of action potential (AP) and Na+ current density. Some of these neurons (26.32%) even displayed spontaneous, recurrent, epileptiform discharges (SREDs). Additionally, certain Rbfox1 target transcripts associated with epilepsy, including glutamate receptor, ionotropic, N-methyl D-aspartate 1 [Grin1, also known as N-methyl-D-aspartate receptor subunit NR1 (NMDAR1)], synaptosomal-associated protein, 25 kDa (SNAP‑25 or Snap25) and sodium channel, voltage gated, type VIII, alpha subunit (Scn8a, also known as Nav1.6) were identified to be upregulated in these cultured cortical neurons with an upregulated Rbfox1 expression. These data suggest that the upregulation of RBFOX1 contributes to neuronal hyperexcitation and seizures. The upregulation of NMDAR1 (Grin1), SNAP‑25 (Snap25) and Scn8a may thus be involved in Rbfox1‑related neuronal hyperexcitation.
    International Journal of Molecular Medicine 01/2015; 35(3). DOI:10.3892/ijmm.2015.2061 · 1.88 Impact Factor
  • Epilepsy Currents 01/2015; 15(1):50-51. DOI:10.5698/1535-7597-15.1.50 · 2.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rare de novo mutations of sodium channels are thought to be an important cause of sporadic epilepsy. The well established role of de novo mutations of sodium channel SCN1A in Dravet Syndrome supports this view, but the etiology of many cases of epileptic encephalopathy remains unknown. We sought to identify the genetic cause in a patient with early onset epileptic encephalopathy by whole exome sequencing of genomic DNA. The heterozygous mutation c. 2003C > T in SCN8A, the gene encoding sodium channel Nav1.6, was detected in the patient but was not present in either parent. The resulting missense substitution, p.Thr767Ile, alters an evolutionarily conserved residue in the first transmembrane segment of channel domain II. The electrophysiological effects of this mutation were assessed in neuronal cells transfected with mutant or wildtype cDNA. The mutation causes enhanced channel activation, with a 10 mV depolarizing shift in voltage dependence of activation as well as increased ramp current. In addition, pyramidal hippocampal neurons expressing the mutant channel exhibit increased spontaneous firing with PDS-like complexes as well as increased frequency of evoked action potentials. The identification of this new gain-of-function mutation of Nav1.6 supports the inclusion of SCN8A as a causative gene in infantile epilepsy, demonstrates a novel mechanism for hyperactivity of Nav1.6, and further expands the role of de novo mutations in severe epilepsy.
    Neurobiology of Disease 09/2014; 69:117–123. DOI:10.1016/j.nbd.2014.05.017 · 5.20 Impact Factor

Full-text (2 Sources)

Available from
Mar 31, 2015