Article

Increased gene expression and production of spinal cyclooxygenase 1 and 2 during experimental osteoarthritis pain

Department of Pharmacology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
Physiological research / Academia Scientiarum Bohemoslovaca (Impact Factor: 1.49). 01/2009; 58(3):419-25.
Source: PubMed

ABSTRACT Knowledge on the involvement of spinal COX-1 and COX-2 in pain due to osteoarthritis could be useful for better understanding of its pathogenesis and therapy. In this study we have investigated a long-term pattern of expression and production of spinal COX-1 and COX-2 in the model of osteoarthritis induced in rats by injection of monoiodoacetate (MIA) into the knee joint. MIA injection produced thermal hyperalgesia (assessed by the plantar test) and tactile allodynia (measured with von Frey hairs). The pain measures reached maximum on the fifht day, then remained relatively stable. The expression of spinal COX-2 mRNA reached maximum on day 5 (5.2 times; P<0.001) and remained increased until day 31 (4.9 times; P<0.001). Expression of spinal COX-1 mRNA increased gradually reaching maximum on the day 31 (4.5 times; P<0.001) when the relative expression of both genes was almost equal. The production of both proteins was almost similar at the beginning of the experiment. The highest production of COX-2 protein was observed on day 5 after the induction of osteoarthritis (increased 3.9 times). The levels of COX-1 protein increased gradually with maximum on day 31 (3.4 times). The present findings indicate that not only expression of COX-2 mRNA but also that of COX-1 mRNA is significantly increased in the spine during osteoarthritis pain. Thus, in contrast to inflammatory pain, the upregulation of spinal COX-1 may be important in osteoarthritis pain.

Download full-text

Full-text

Available from: Peter Zanvit, Jul 05, 2015
0 Followers
 · 
95 Views
  • Source
    Pharmacology Biochemistry and Behavior 01/2013; 103(4):764-772. · 2.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Much information is available on the role of nitric oxide (NO) in osteoarthritis (OA). However, its role has not been studied in the monosodium iodoacetate (MIA)-induced model of osteoarthritic pain. The present study was undertaken in rats to investigate the effect of iNOS inhibitor S-methylisothiourea (SMT) in MIA-induced osteoathritic pain and disease progression in rats. Osteoarthritis was produced by single intra-articular injection of the MIA in the right knee joint on day 0. Treatment groups were orally gavazed with different doses of SMT (10, 30 and 100mg/kg) and etoricoxib (10mg/kg) daily for 21days. On days 0, 3, 7, 14 and 21, pain was measured and histopathology of right knee joint was done on day 21. SMT produced analgesia in a dose-dependent manner as shown by mechanical, heat hyperalgesia, knee vocalization, knee squeeze test, and spontaneous motor activity test. SMT reduced NO production in synovial fluid. Histopathological findings indicated that SMT reduced disease progression as evident from complete cartilage formation in rats treated with SMT at 30mg/kg. In conclusion, the results indicate that SMT attenuates the MIA-induced pain and histopathological changes in the knee joint. The antinociceptive and antiarthritic effects of SMT were mediated by inhibiting cartilage damage and suppression of NO in synovial fluid. It is suggested that SMT has potential as a therapeutic modality in the treatment of osteoarthritis.
    Pharmacology Biochemistry and Behavior 01/2012; 103(4):764-772. DOI:10.1016/j.pbb.2012.12.013. · 2.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to compare the gait parameters recorded on the CatWalk and the mechanical sensitivity with von Frey filaments of two putative models of osteoarthritis over a one month period, and to evaluate the effect of celecoxib on these parameters. Animals underwent either a surgical sectioning of the anterior cruciate ligament with partial medial menisectomy (ACLT+pMMx) to create a joint instability model or received an intra-articular injection of monoiodoacetate (MIA) as a putative inflammatory joint pain model. Animals were assessed for four consecutive weeks and knee joints were then evaluated histologically. Spinal cord lumbar enlargements were harvested for selected neuropeptide analysis (substance P (SP) and calcitonin gene related peptide (CGRP)). With the MIA model, significant changes persisted in selected dynamic gait parameters throughout the study in the injured limb as well as with the von Frey filaments. The ACLT+pMMx model in contrast showed no clear differential response between both hind limb for both gait parameters and pain-related behavior with von Frey filaments occurred only on the last day of the study. Neuropeptide analysis of spinal cord lumbar enlargements revealed a significant increase in CGRP concentration in both models and an increase in SP concentration only in the MIA model. Histological evaluation confirmed the presence of articular cartilage lesions in both models, but they were much more severe in the MIA model. Celecoxib had an effect on all selected gait parameters at the very beginning of the study and had an important alleviating effect on mechanical allodynia. These results suggest that the MIA model may be more appropriate for the evaluation of short term pain studies and that celecoxib may modulate mechanical allodynia through central sensitization mechanisms.
    Pharmacology Biochemistry and Behavior 01/2011; 97(3):603-10. DOI:10.1016/j.pbb.2010.11.003 · 2.82 Impact Factor