Article

Galectin-1 on cervical epithelial cells is a receptor for the sexually transmitted human parasite Trichomonas vaginalis.

Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
Cellular Microbiology (Impact Factor: 4.81). 10/2008; 10(10):2078-90. DOI: 10.1111/j.1462-5822.2008.01190.x
Source: PubMed

ABSTRACT The extracellular protozoan parasite Trichomonas vaginalis causes the most prevalent non-viral sexually transmitted human infection, yet the pathogenesis of infection is poorly understood, and host cell receptors have not been described. The surface of T. vaginalis is covered with a glycoconjugate called lipophosphoglycan (LPG), which plays a role in the adherence and cytotoxicity of parasites to human cells. T. vaginalis LPG contains high amounts of galactose, making this polysaccharide a candidate for recognition by the galactose-binding galectin family of lectins. Here we show that galectin-1 (gal-1) is expressed by human cervical epithelial cells and binds T. vaginalis LPG. Gal-1 binds to parasites in a carbohydrate-dependent manner that is inhibited in the presence of T. vaginalis LPG. Addition of purified gal-1 to cervical epithelial cells also enhances parasite binding, while a decrease in gal-1 expression by small interfering RNA (siRNA) transfection decreases parasite binding. In contrast, the related galectin-7 (gal-7) does not bind T. vaginalis in a carbohydrate-dependent manner, and is unable to mediate attachment of parasites to host cells. Our data are consistent with the presence of multiple host cell receptors for T. vaginalis of which gal-1 is the first to be identified and highlight the importance of glycoconjugates in host-pathogen interactions.

0 Bookmarks
 · 
43 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The parasite Trichomonas vaginalis is the causative agent of trichomoniasis, a prevalent sexually transmitted infection. Here, we report the cellular analyses of T. vaginalis tetraspanin 6 (TvTSP6). This family of membrane proteins has been implicated in cell adhesion, migration and proliferation in vertebrates. We observed that TvTSP6 expression is upregulated upon contact with vaginal ectocervical cells (VECs) and that parasite strains that are highly adherent to VECs express higher levels of TvTSP6 mRNA relative to poorly adherent strains. TvTSP6 is localized predominantly on the flagella of parasites cultured in the absence of host cells; however, adherence of the parasite to VECs initially results in a redistribution of the protein to intracellular vesicles and the plasma membrane of the main body of the cell. We found that a 16-amino-acid C-terminal intracellular tail of TvTSP6 is necessary and sufficient for flagellar localization and protein redistribution when the parasite is in contact with VECs. Additionally, deletion of the C-terminal tail reduced parasite migration through Matrigel, a mimic of the extracellular matrix. Together, our data support roles for TvTSP6 in parasite migration in the host and sensory reception during infection.
    Cellular Microbiology 08/2012; · 4.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The morphological transformation of Trichomonas vaginalis from an ellipsoid form in batch culture to an adherent amoeboid form results from the contact of parasites with vaginal epithelial cells and with immobilized fibronectin (FN), a basement membrane component. This suggests host signaling of the parasite. We applied integrated transcriptomic and proteomic approaches to investigate the molecular responses of T. vaginalis upon binding to FN. A transcriptome analysis was performed by using large-scale expressed-sequence-tag (EST) sequencing. A total of 20,704 ESTs generated from batch culture (trophozoite-EST) versus FN-amoeboid trichomonad (FN-EST) cDNA libraries were analyzed. The FN-EST library revealed decreased amounts of transcripts that were of lower abundance in the trophozoite-EST library. There was a shift by FN-bound organisms to the expression of transcripts encoding essential proteins, possibly indicating the expression of genes for adaptation to the morphological changes needed for the FN-adhesive processes. In addition, we identified 43 differentially expressed proteins in the proteomes of FN-bound and unbound trichomonads. Among these proteins, cysteine peptidase, glyceraldehyde-3-phosphate dehydrogenase (an FN-binding protein), and stress-related proteins were upregulated in the FN-adherent cells. Stress-related genes and proteins were highly expressed in both the transcriptome and proteome of FN-bound organisms, implying that these genes and proteins may play critical roles in the response to adherence. This is the first report of a comparative proteomic and transcriptomic analysis after the binding of T. vaginalis to FN. This approach may lead to the discovery of novel virulence genes and affirm the role of genes involved in disease pathogenesis. This knowledge will permit a greater understanding of the complex host-parasite interplay.
    Infection and immunity 08/2012; 80(11):3900-11. · 4.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite their abundance at gastrointestinal sites, little is known about the role of galectins in gut immune responses. We have therefore investigated the Citrobacter rodentium model of colonic infection and inflammation in Galectin-1 or Galectin-3 null mice. Gal-3 null mice showed a slight delay in colonisation after inoculation with C. rodentium and a slight delay in resolution of infection, associated with delayed T cell, macrophage and dendritic cell infiltration into the gut mucosa. However, Gal-1 null mice also demonstrated reduced T cell and macrophage responses to infection. Despite the reduced T cell and macrophage response in Gal-1 null mice, there was no effect on C. rodentium infection kinetics and pathology. Overall, Gal-1 and Gal-3 play only a minor role in immunity to a gut bacterial pathogen.
    PLoS ONE 01/2014; 9(9):e107933. · 3.53 Impact Factor

Full-text

View
1 Download