X-ray structure of papaya chitinase reveals the substrate binding mode of glycosyl hydrolase family 19 chitinases

Service de Chimie Générale (CP: 206/4), Institut de Pharmacie, Université Libre de Bruxelles (ULB), Campus de la Plaine, Boulevard du Triomphe, B-1050 Brussels, Belgium.
Biochemistry (Impact Factor: 3.19). 08/2008; 47(32):8283-91. DOI: 10.1021/bi800655u
Source: PubMed

ABSTRACT The crystal structure of a chitinase from Carica papaya has been solved by the molecular replacement method and is reported to a resolution of 1.5 A. This enzyme belongs to family 19 of the glycosyl hydrolases. Crystals have been obtained in the presence of N-acetyl- d-glucosamine (GlcNAc) in the crystallization solution and two well-defined GlcNAc molecules have been identified in the catalytic cleft of the enzyme, at subsites -2 and +1. These GlcNAc moieties bind to the protein via an extensive network of interactions which also involves many hydrogen bonds mediated by water molecules, underlying their role in the catalytic mechanism. A complex of the enzyme with a tetra-GlcNAc molecule has been elaborated, using the experimental interactions observed for the bound GlcNAc saccharides. This model allows to define four major substrate interacting regions in the enzyme, comprising residues located around the catalytic Glu67 (His66 and Thr69), the short segment E89-R90 containing the second catalytic residue Glu89, the region 120-124 (residues Ser120, Trp121, Tyr123, and Asn124), and the alpha-helical segment 198-202 (residues Ile198, Asn199, Gly201, and Leu202). Water molecules from the crystal structure were introduced during the modeling procedure, allowing to pinpoint several additional residues involved in ligand binding that were not previously reported in studies of poly-GlcNAc/family 19 chitinase complexes. This work underlines the role played by water-mediated hydrogen bonding in substrate binding as well as in the catalytic mechanism of the GH family 19 chitinases. Finally, a new sequence motif for family 19 chitinases has been identified between residues Tyr111 and Tyr125.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The discovery of GH (Glycoside Hydrolase) 19 chitinases in Streptomyces sp. raises the possibility of the presence of these proteins in other bacterial species, since they were initially thought to be confined to higher plants. The present study mainly concentrates on the phylogenetic distribution and homology conservation in GH19 family chitinases. Extensive database searches are performed to identify the presence of GH19 family chitinases in the three major super kingdoms of life. Multiple sequence alignment of all the identified GH19 chitinase family members resulted in the identification of globally conserved residues. We further identified conserved sequence motifs across the major sub groups within the family. Estimation of evolutionary distance between the various bacterial and plant chitinases are carried out to better understand the pattern of evolution. Our study also supports the horizontal gene transfer theory, which states that GH19 chitinase genes are transferred from higher plants to bacteria. Further, the present study sheds light on the phylogenetic distribution and identifies unique sequence signatures that define GH19 chitinase family of proteins. The identified motifs could be used as markers to delineate uncharacterized GH19 family chitinases. The estimation of evolutionary distance between chitinase identified in plants and bacteria shows that the flowering plants are more related to chitinase in actinobacteria than that of identified in purple bacteria. We propose a model to elucidate the natural history of GH19 family chitinases.
    Journal of Molecular Evolution 05/2010; 70(5):466-78. DOI:10.1007/s00239-010-9345-z · 1.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The plant genome contains a large number of sequences that encode catalytically-inactive chitinases referred to as chitinase-like proteins (CLPs). Although CLPs share high sequence and structural homology to chitinases of GH18 (TIM barrel domain) and GH19 families, they may lack the binding/catalytic activity. Molecular genetic analysis revealed that gene duplication events followed by mutation in the existing chitinase gene have resulted in the loss of activity. The evidences show that adaptive functional diversification of the CLPs has been achieved through alterations in the flexible regions than in the rigid structural elements. The CLPs plays an important role in the defense response against pathogenic attack, biotic and abiotic stress. They are also involved in the growth and developmental processes of plants. Since the physiological roles of CLPs are similar to chitinase; such mutations have led to pluri-functional enzymes. The biochemical and structural characterization of the CLPs is essential for understanding their roles and to develop potential utility in biotechnological industries. This review sheds light on the structure-function evolution of CLPs from chitinases. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
    Proteomics 02/2015; 15(10). DOI:10.1002/pmic.201400421 · 3.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Corn (Zea mays) and Arabidopsis (Arabidopsis thaliana) produce GH family 19 plant class IV chitinases. These chitinases contain two domains: a small N-terminal hevein region, and a C-terminal chitinase. Numerous structures of GH19 chitinase domains have been reported, including the chitinase domain of corn ChitA. Structural information on the N-terminal domains, however, is lacking. Fusarium pathogens secrete fungalysin proteases that cleave some class IV chitinases at a well-defined Gly-Cys site between the two domains. To study the structure of the peptide domain we used the fungalysin protease Fv-cmp as a tool to release the hevein domain from plant class IV chitinases, allowing their direct study. MALDI-TOF MS analysis of fungalysin-released peptides from plant class IV chitinases from corn and Arabidopsis allowed visualization of multiple isotopomers, resulting in accurate mass determination. When treated with DTT, peptide ions increased in mass by six mass units, suggesting breakage of three disulfide bonds. When reduced peptides were S-alkylated, peptides were converted to a series of evenly spaced ions with various states of alkylation, confirming the presence of six reduced cysteines. This chemical data was complemented by use of molecular modeling to determine the fold of the peptide and location of disulfide bonds. The chemical data and molecular model combine to create a structural model of a hevein domain from a GH19 chitinase.
    Physiological and Molecular Plant Pathology 11/2014; 89. DOI:10.1016/j.pmpp.2014.11.004 · 1.99 Impact Factor

Similar Publications