Article

Candidate genes and the behavioral phenotype in 22q11.2 deletion syndrome.

Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Republic of Ireland.
Developmental Disabilities Research Reviews (Impact Factor: 0.29). 01/2008; 14(1):26-34. DOI: 10.1002/ddrr.5
Source: PubMed

ABSTRACT There is an overwhelming evidence that children and adults with 22q11.2 deletion syndrome (22q11.2DS) have a characteristic behavioral phenotype. In particular, there is a growing body of evidence that indicates an unequivocal association between 22q11.2DS and schizophrenia, especially in adulthood. Deletion of 22q11.2 is the third highest risk for the development of schizophrenia, with only a greater risk conferred by being the child of two parents with schizophrenia or the monozygotic co-twin of an affected individual. Both linkage and association studies of people with schizophrenia have implicated several susceptibility genes, of which three are in the 22q11.2 region; catechol-o-methyltransferase (COMT), proline dehydrogenase (PRODH), and Gnb1L. In addition, variation in Gnb1L is associated with the presence of psychosis in males with 22q11.2DS. In mouse models of 22q11.2DS, haploinsufficiency of Tbx1 and Gnb1L is associated with reduced prepulse inhibition, a schizophrenia endophenotype. The study of 22q11.2DS provides an attractive model to increase our understanding of the development and pathogenesis of schizophrenia and other psychiatric disorders in 22q11.2DS and in wider population.

0 Bookmarks
 · 
83 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The 22q11 chromosomal region contains low copy repeats (LCRs) sequences that mediate non-allelic homologous recombination, which predisposes to copy number variations (CNVs) at this locus. Hemizygous deletions of the proximal 22q11.2 region result in the 22q11.2 deletion syndrome (22q11.2 DS). In addition, 22q11.2 duplications involving the distal LCR22s have been reported. This article describes a patient presenting a 2.5-Mb de novo deletion at proximal 22q11.21 region (between LCRs A-D), combined with a 1.3-Mb maternally inherited duplication at distal 22q11.23 region (between LCRs F-H). The presence of concomitant chromosomal imbalances found in this patient has not been reported previously. Clinical and molecular data were compared with literature, in order to contribute to genotype-phenotype correlation. These findings exemplify the complexity and genetic heterogeneity observed in 22q11.2 deletion syndrome and highlights the difficulty to make genetic counseling and predict phenotypic consequences in these situations. © 2014 Wiley Periodicals, Inc.
    American Journal of Medical Genetics Part A 10/2014; · 2.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Typical orofacial clefts (OFCs) comprise cleft lip, cleft palate and cleft lip and palate. The complex etiology has been postulated to involve chromosome rearrangements, gene mutations and environmental factors. A group of genes including IRF6, FOXE1, GLI2, MSX2, SKI, SATB2, MSX1 and FGF has been implicated in the etiology of OFCs. Recently, the role of the copy number variations (CNVs) has been studied in genetic defects and diseases. CNVs act by modifying gene expression, disrupting gene sequence or altering gene dosage. The aims of this study were to screen the above-mentioned genes and to investigate CNVs in patients with OFCs. The sample was composed of 23 unrelated individuals who were grouped according to phenotype (associated with other anomalies or isolated) and familial recurrence. New sequence variants in GLI2, MSX1 and FGF8 were detected in patients, but not in their parents, as well as in 200 control chromosomes, indicating that these were rare variants. CNV screening identified new genes that can influence OFC pathogenesis, particularly highlighting TCEB3 and KIF7, that could be further analyzed. The findings of the present study suggest that the mechanism underlying CNV associated with sequence variants may play a role in the etiology of OFC.Journal of Human Genetics advance online publication, 13 November 2014; doi:10.1038/jhg.2014.96.
    Journal of Human Genetics 11/2014; · 2.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The 22q11.2 deletion syndrome (22q11DS) is caused by an autosomal dominant microdeletion of chromosome 22 at the long arm (q) 11.2 band. The 22q11DS is among the most clinically variable syndromes, with more than 180 features related with the deletion, and is associated with an increased risk of psychiatric disorders, accounting for up to 1%-2% of schizophrenia cases. In recent years, several genes located on chromosome 22q11 have been linked to schizophrenia, including those encoding catechol-O-methyltransferase and proline dehydrogenase, and the interaction between these and other candidate genes in the deleted region is an important area of research. It has been suggested that haploinsufficiency of some genes within the 22q11.2 region may contribute to the characteristic psychiatric phenotype and cognitive functioning of schizophrenia. Moreover, an extensive literature on neuroimaging shows reductions of the volumes of both gray and white matter, and these findings suggest that this reduction may be predictive of increased risk of prodromal psychotic symptoms in 22q11DS patients. Experimental and standardized cognitive assessments alongside neuroimaging may be important to identify one or more endophenotypes of schizophrenia, as well as a predictive prodrome that can be preventively treated during childhood and adolescence. In this review, we summarize recent data about the 22q11DS, in particular those addressing the neuropsychiatric and cognitive phenotypes associated with the deletion, underlining the recent advances in the studies about the genetic architecture of the syndrome.
    Neuropsychiatric Disease and Treatment 01/2013; 9:1873-1884. · 2.15 Impact Factor