Article

Energetic responses to cold temperatures in rats lacking forebrain-caudal brain stem connections

Graduate Groups of Psychology and Neuroscience, Univ. of Pennsylvania, 3720 Walnut St., Philadelphia, PA 19104, USA.
AJP Regulatory Integrative and Comparative Physiology (Impact Factor: 3.53). 09/2008; 295(3):R789-98. DOI: 10.1152/ajpregu.90394.2008
Source: PubMed

ABSTRACT Hypothalamic neurons are regarded as essential for integrating thermal afferent information from skin and core and issuing commands to autonomic and behavioral effectors that maintain core temperature (T(c)) during cold exposure and for the control of energy expenditure more generally. Caudal brain stem neurons are necessary elements of the hypothalamic effector pathway and also are directly driven by skin and brain cooling. To assess whether caudal brain stem processing of thermal afferent signals is sufficient to drive endemic effectors for thermogenesis, heart rate (HR), T(c), and activity responses of chronic decerebrate (CD) and control rats adapted to 23 degrees C were compared during cold exposure (4, 8, or 12 degrees C) for 6 h. Other CDs and controls were exposed to 4 or 23 degrees C for 2 h, and tissues were processed for norepinephrine turnover (NETO), a neurochemical measure of sympathetic drive. Controls maintained T(c) for all temperatures. CDs maintained T(c) for the 8 and 12 degrees C exposures, but T(c) declined 2 degrees C during the 4 degrees C exposure. Cold exposure elevated HR in CDs and controls alike. Tachycardia magnitude correlated with decreases in environmental temperature for controls, but not CDs. Cold increased NETO in brown adipose tissue, heart, and some white adipose tissue pads in CDs and controls compared with their respective room temperature controls. These data demonstrate that, in neural isolation from the hypothalamus, cold exposure drives caudal brain stem neuronal activity and engages local effectors that trigger sympathetic energetic and cardiac responses that are comparable in many, but not in all, respects to those seen in neurologically intact rats.

0 Followers
 · 
564 Views
  • Source
    • "Therefore, only NETO should be measured in AMPT-treated animals with a parallel set of animals used for non-NETO measures. With this method we (Brito et al., 2007, 2008; Mul et al., 2013; Nautiyal et al., 2008; Shi et al., 2004; Youngstrom and Bartness, 1995) and others (Garofalo et al., 1996; Harris, 2012; Lazzarini and Wade, 1991; Migliorini et al., 1997; Penn et al., 2006) have measured differential NETO across WAT depots and BAT showing the fat pad-specific patterns of sympathetic drive that are triggered by various energy demanding challenges. Thus, for measures of SNS drive in non-human animals we see the AMPT method as preferable to electrophysiological measures because with the latter usually only innervation to one or two tissues can be measured at a time because of electrical interference, whereas with the AMPT method the number of tissues that can be simultaneously assayed are only limited by one's interest. "
    [Show abstract] [Hide abstract]
    ABSTRACT: White adipose tissue (WAT) is innervated by the sympathetic nervous system (SNS) and its activation is necessary for lipolysis. WAT parasympathetic innervation is not supported. Fully-executed SNS-norepinephrine (NE)-mediated WAT lipolysis is dependent on β-adrenoceptor stimulation ultimately hinging on hormone sensitive lipase and perilipin A phosphorylation. WAT sympathetic drive is appropriately measured by electrophysiological and neurochemical (NE turnover) in non-human animals and this drive is fat pad-specific preventing generalizations among WAT depots and non-WAT organs. Leptin-triggered SNS-mediated lipolysis is weakly supported, whereas insulin or adenosine inhibition of SNS/NE-mediated lipolysis is strongly supported. In addition to lipolysis control, increases or decreases in WAT SNS drive/NE inhibit and stimulate white adipocyte proliferation, respectively. WAT sensory nerves are of spinal-origin and sensitive to local leptin and increases in sympathetic drive, the latter implicating lipolysis. Transsynaptic viral tract tracer use revealed WAT central sympathetic and sensory circuits including SNS-sensory feedback loops that may control lipolysis.
    Frontiers in Neuroendocrinology 04/2014; 35(4). DOI:10.1016/j.yfrne.2014.04.001 · 7.58 Impact Factor
  • Source
    • "Therefore, only NETO should be measured in AMPT-treated animals with a parallel set of animals used for non-NETO measures. With this method we (Brito et al., 2007, 2008; Mul et al., 2013; Nautiyal et al., 2008; Shi et al., 2004; Youngstrom and Bartness, 1995) and others (Garofalo et al., 1996; Harris, 2012; Lazzarini and Wade, 1991; Migliorini et al., 1997; Penn et al., 2006) have measured differential NETO across WAT depots and BAT showing the fat pad-specific patterns of sympathetic drive that are triggered by various energy demanding challenges. Thus, for measures of SNS drive in non-human animals we see the AMPT method as preferable to electrophysiological measures because with the latter usually only innervation to one or two tissues can be measured at a time because of electrical interference, whereas with the AMPT method the number of tissues that can be simultaneously assayed are only limited by one's interest. "
    [Show abstract] [Hide abstract]
    ABSTRACT: White adipose tissue (WAT) is innervated by the sympathetic nervous system (SNS) and its activation is necessary for lipolysis. WAT parasympathetic innervation is not supported. Fully-executed SNS-norepinephrine (NE)-mediated WAT lipolysis is dependent on β-adrenoceptor stimulation ultimately hinging on hormone sensitive lipase and perilipin A phosphorylation. WAT sympathetic drive is appropriately measured by electrophysiological and neurochemical (NE turnover) in non-human animals and this drive is fat pad-specific preventing generalizations among WAT depots and non-WAT organs. Leptin-triggered SNS-mediated lipolysis is weakly supported, whereas insulin or adenosine inhibition of SNS/NE-mediated lipolysis is strongly supported. In addition to lipolysis control, increases or decreases in WAT SNS drive/NE inhibit and stimulate white adipocyte proliferation, respectively. WAT sensory nerves are of spinal-origin and sensitive to local leptin and increases in sympathetic drive, the latter implicating lipolysis. Transsynaptic viral tract tracer use revealed WAT central sympathetic and sensory circuits including SNS-sensory feedback loops that may control lipolysis.
    Frontiers in Neuroendocrinology 01/2014; · 7.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The effects of peripheral glucagon like peptide-1 receptor (GLP-1R) stimulation on feeding, gastric emptying, and energetic responses involve vagal transmission and central nervous system processing. Despite a lack of studies aimed at determining which central nervous system regions are critical for the GLP-1R response production, hypothalamic/forebrain processing is regarded as essential for these effects. Here the contribution of the caudal brainstem to the control of food intake, core temperature, heart rate, and gastric emptying responses generated by peripheral delivery of the GLP-1R agonist, exendin-4 (Ex-4), was assessed by comparing responses of chronic supracollicular decerebrate (CD) rats to those of pair-fed intact control rats. Responses driven by hindbrain intracerebroventricular (fourth i.c.v) delivery of Ex-4 were also evaluated. Intraperitoneal Ex-4 (1.2 and 3.0 microg/kg) suppressed glucose intake in both CD rats (5.0+/-1.2 and 4.4+/-1.1 ml ingested) and controls (9.4+/-1.5 and 7.7+/-0.8 ml ingested), compared with intakes after vehicle injections (13.1+/-2.5 and 13.2+/-1.7 ml ingested, respectively). Hindbrain ventricular Ex-4 (0.3 microg) also suppressed food intake in CD rats (4.7+/-0.6 ml ingested) and controls (11.0+/-2.9 ml ingested), compared with vehicle intakes (9.3+/-2.1 and 19.3+/-4.3 ml ingested, respectively). Intraperitoneal Ex-4 (0.12, 1.2, 2.4 microg/kg) reduced gastric emptying rates in a dose-related manner similarly for both CD and control rats. Hypothermia followed ip and fourth i.c.v Ex-4 in awake, behaving controls (0.6 and 1.0 C average suppression) and CD rats (1.5 and 2.5 C average suppression). Intraperitoneal Ex-4 triggered tachycardia in both control and CD rats. Results demonstrate that caudal brainstem processing is sufficient for mediating the suppression of intake, core temperature, and gastric emptying rates as well as tachycardia triggered by peripheral GLP-1R activation and also hindbrain-delivered ligand. Contrary to the literature, hypothalamic/forebrain processing and forebrain-caudal brainstem communication is not required for the observed responses.
    Endocrinology 05/2008; 149(8):4059-68. DOI:10.1210/en.2007-1743 · 4.64 Impact Factor
Show more