Article

Cellular repair of CNS disorders: an immunological perspective.

Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
Human Molecular Genetics (Impact Factor: 6.68). 04/2008; 17(R1):R84-92. DOI: 10.1093/hmg/ddn104
Source: PubMed

ABSTRACT Cellular repair is a promising strategy for treating central nervous system (CNS) disorders. Several strategies have been contemplated including replacement of neurons or glia that have been lost due to injury or disease, use of cellular grafts to modify or augment the functions of remaining neurons and/or use of cellular grafts to protect neural tissue by local delivery of growth or trophic factors. Depending on the specific disease target, there may be one or many cell types that could be considered for therapy. In each case, an additional variable must be considered--the role of the immune system in both the injury process itself and in the response to incoming cells. Cellular transplants can be roughly categorized into autografts, allografts and xenografts. Despite the immunological privilege of the CNS, allografts and xenografts can elicit activation of the innate and adaptive immune system. In this article, we evaluate the various effects that immune cells and signals may have on the survival, proliferation, differentiation and migration/integration of transplanted cells in therapeutic approaches to CNS injury and disease.

0 Followers
 · 
98 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transplantation of major histocompatibility complex (MHC)-mismatched mouse neural precursor cells (NPCs) into mice persistently infected with the neurotropic JHM strain of mouse hepatitis virus (JHMV) results in rapid rejection that is mediated, in part, by T cells. However, the contribution of the innate immune response to allograft rejection in a model of viral-induced neurological disease has not been well defined. Herein, we demonstrate that the natural killer (NK) cell-expressing activating receptor NKG2D participates in transplanted allogeneic NPC rejection in mice persistently infected with JHMV. Cultured NPCs derived from C57BL/6 (H-2b) mice express the NKG2D ligand retinoic acid early precursor transcript (RAE)-1 but expression was dramatically reduced upon differentiation into either glia or neurons. RAE-1+ NPCs were susceptible to NK cell-mediated killing whereas RAE-1- cells were resistant to lysis. Transplantation of C57BL/6-derived NPCs into JHMV-infected BALB/c (H-2d) mice resulted in infiltration of NKG2D+CD49b+ NK cells and treatment with blocking antibody specific for NKG2D increased survival of allogeneic NPCs. Further, transplantation of differentiated RAE-1- allogeneic NPCs into JHMV-infected BALB/c mice resulted in enhanced survival, highlighting a role for the NKG2D:RAE-1 signaling axis in allograft rejection. We also demonstrate that transplantation of allogeneic NPCs into JHMV-infected mice resulted in infection of the transplanted cells suggesting that these cells may be targets for infection. Viral infection of cultured cells increased RAE-1 expression, resulting in enhanced NK cell-mediated killing through NKG2D recognition. Collectively, these results show that in a viral-induced demyelination model, NK cells contribute to rejection of allogeneic NPCs through an NKG2D signaling pathway. Stem Cells 2014
    Stem Cells 10/2014; 32(10). DOI:10.1002/stem.1760 · 7.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lmx1a plays a central role in the specification of dopaminergic (DA) neurons, which potentially could be employed as a key factor for trans-differentiation to DA neurons. In our previous study, we have converted somatic cells directly into neural stem cell – like cells, namely induced neural stem cells (iNSCs), which further can be differentiated into subtypes of neurons and glia in vitro. In the present study, we continued to test whether these iNSCs have therapeutic effects when transplanted into a mouse model of Parkinson’s disease (PD), especially when Lmx1a was introduced into these iNSCs under a Nestin enhancer. iNSCs that over-expressed Lmx1a (iNSC-Lmx1a) gave rise to an increased yield of dopaminergic neurons and secreted a higher level of dopamine in vitro. When transplanted into mouse models of PD, both groups of mice showed decreased ipsilateral rotations; yet mice that received iNSC-Lmx1a vs. iNSC-GFP exhibited better recovery. Although few iNSCs survived 11 weeks after transplantation, the improved motor performance in iNSC-Lmx1a group did correlate with a greater tyrosine hydroxylase (TH) signal abundance in the lesioned area of striatum, suggesting that iNSCs may have worked through a non-autonomous manner to enhance the functions of remaining endogenous dopaminergic neurons in brain.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lmx1a plays a central role in the specification of dopaminergic (DA) neurons, which potentially could be employed as a key factor for trans-differentiation to DA neurons. In our previous study, we have converted somatic cells directly into neural stem cell-like cells, namely induced neural stem cells (iNSCs), which further can be differentiated into subtypes of neurons and glia in vitro. In the present study, we continued to test whether these iNSCs have therapeutic effects when transplanted into a mouse model of Parkinson's disease (PD), especially when Lmx1a was introduced into these iNSCs under a Nestin enhancer. iNSCs that over-expressed Lmx1a (iNSC-Lmx1a) gave rise to an increased yield of dopaminergic neurons and secreted a higher level of dopamine in vitro. When transplanted into mouse models of PD, both groups of mice showed decreased ipsilateral rotations; yet mice that received iNSC-Lmx1a vs. iNSC-GFP exhibited better recovery. Although few iNSCs survived 11weeks after transplantation, the improved motor performance in iNSC-Lmx1a group did correlate with a greater tyrosine hydroxylase (TH) signal abundance in the lesioned area of striatum, suggesting that iNSCs may have worked through a non-autonomous manner to enhance the functions of remaining endogenous dopaminergic neurons in brain. Copyright © 2014. Published by Elsevier B.V.
    Stem Cell Research 10/2014; 14(1):1-9. DOI:10.1016/j.scr.2014.10.004 · 3.91 Impact Factor