Extracellular Redox State Regulates Features Associated with Prostate Cancer Cell Invasion

Pathology and Laboratory Medicine Service, William S. Middleton Memorial Veterans Hospital, Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53705, USA.
Cancer Research (Impact Factor: 9.33). 07/2008; 68(14):5820-6. DOI: 10.1158/0008-5472.CAN-08-0162
Source: PubMed


We have examined the possible role of extracellular reduction-oxidation (redox) state in regulation of biological/biochemical features associated with prostate cancer cell invasion. DU145, PC-3, and RWPE1-derived human prostate cancer (WPE1-NB26) cell lines were used for the present in vitro analysis. Increasing levels of nitric oxide using S-nitroso-N-acetylpenicillamine resulted in a decrease in cell invasion ability, whereas increasing levels of extracellular superoxide radical (O(2)(*-)) using xanthine/xanthine oxidase resulted in an increase in cell invasion ability in these three cell lines. WPE1-NB26 cells exhibited an increased glutathione/glutathione disulfide ratio in the medium in comparison with RWPE1 cells (immortalized but nonmalignant prostate epithelial cells), suggesting an alteration of extracellular redox state of WPE1-NB26 cells. We hypothesized that O(2)(*-) production at or near the plasma membrane or in the adjacent extracellular matrix at least partially regulated prostate cancer cell invasion. Using adenovirus-mediated extracellular superoxide dismutase (EC-SOD) gene transduction to enzymatically decrease O(2)(*-) levels, we showed that in the presence of heparin, adenovirus EC-SOD gene transduction resulted in an increase in the expression of EC-SOD outside the cells with resultant inhibition of cell invasion ability. This inhibition correlated with reduced metalloproteinase [matrix metalloproteinase (MMP) 2/membrane type 1-MMP] activities and increased levels of extracellular nitrite. Our results suggest a prominent role of extracellular redox status in regulation of cell invasion, which may provide opportunities for therapeutic interventions.

Download full-text


Available from: Weixiong Zhong,
  • Source
    • "The implications for ROS regulation are highly significant for cancer and other disease therapies because commonly used radio and chemotherapeutic drugs influence tumor outcome through ROS modulation. Some researchers are now using adenovirus containing SOD and CAT in the treatment of various cancers both in vitro and in vivo [106, 107]. Overexpression of MnSOD inhibits ras-induced transformation, modulated by intracellular ROS level [108]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Reactive oxygen species (ROS) are generated as a consequence of metabolic reactions in the mitochondria of eukaryotic cells. This work describes the role of the manganese superoxide dismutase (MnSOD) as a biomarker of different human diseases and proposes a new therapeutic application for the prevention of cancer and its treatment. The paper also describes how a new form of human MnSOD was discovered, its initial application, and its clinical potentials. The MnSOD isolated from a human liposarcoma cell line (LSA) was able to kill cancer cells expressing estrogen receptors, but it did not have cytotoxic effects on normal cells. Together with its oncotoxic activity, the recombinant MnSOD (rMnSOD) exerts a radioprotective effect on normal cells irradiated with X-rays. The rMnSOD is characterized by the presence of a leader peptide, which allows the protein to enter cells: this unique property can be used in the radiodiagnosis of cancer or chemotherapy, conjugating radioactive substances or chemotherapic drugs to the leader peptide of the MnSOD. Compared to traditional chemotherapic agents, the drugs conjugated with the leader peptide of MnSOD can selectively reach and enter cancer cells, thus reducing the side effects of traditional treatments.
    01/2014; 2014(2):476789. DOI:10.1155/2014/476789
  • Source
    • "Also, the NADPH oxidase inhibitor diphenyleneiodonium chloride, which functions as an antioxidant by inhibiting ROS production by NADPH oxidases, suppressed prostate cancer cell viability, including that of LNCaP cells [165]. In addition, another NADPH oxidase inhibitor apocynin suppressed prostate cancer cell invasion [166]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Aberrant androgen receptor (AR) signaling plays a critical role in androgen-dependent prostate cancer (PCa), as well as in castration-resistant PCa (CRPC). Oxidative stress seems to contribute to the tumorigenesis and progression of PCa, as well as the development of CRPC, via activation of AR signaling. This notion is supported by the fact that there is an aberrant or improper regulation of the redox status in these disorders. Additionally, androgen-deprivation-induced oxidative stress seems to be involved in the pathogenesis of several disorders caused by androgen-deprivation therapy (ADT), including osteoporosis, neurodegenerative disease, and cardiovascular disease. Oxidative stress can be suppressed with antioxidants or via a reduction in reactive oxygen species production. Thus, developing new therapeutic agents that reduce oxidative stress might be useful in preventing the conversion of androgen-dependent PCa into CRPC, as well as reducing the adverse effects associated with ADT. The objective of this review is to provide an overview regarding the relationship between oxidative stress and AR signaling in the context of PCa and especially CRPC. Additionally, we discuss the potential use of antioxidant therapies in the treatment of PCa.
    Free Radical Biology and Medicine 07/2011; 51(7):1320-8. DOI:10.1016/j.freeradbiomed.2011.07.011 · 5.74 Impact Factor
  • Source
    • "The present study uncovers a novel mechanism by which ecSOD promotes endothelial functions such as EC migration and proliferation by generating extracellular H2O2 at the specific membrane compartment, and thus facilitating VEGF signaling linked to angiogenesis. In contrast, ecSOD overexpression inhibits, instead of increase, tumor angiogenesis and tumor invasion [47], [48]. In pro-oxidant pathological conditions such as atherosclerosis and hypertension, ecSOD seems to be inactivated by H2O2 derived from ecSOD due to its peroxidase activity [49], [50]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Reactive oxygen species (ROS), in particular, H(2)O(2), is essential for full activation of VEGF receptor2 (VEGFR2) signaling involved in endothelial cell (EC) proliferation and migration. Extracellular superoxide dismutase (ecSOD) is a major secreted extracellular enzyme that catalyzes the dismutation of superoxide to H(2)O(2), and anchors to EC surface through heparin-binding domain (HBD). Mice lacking ecSOD show impaired postnatal angiogenesis. However, it is unknown whether ecSOD-derived H(2)O(2) regulates VEGF signaling. Here we show that gene transfer of ecSOD, but not ecSOD lacking HBD (ecSOD-DeltaHBD), increases H(2)O(2) levels in adductor muscle of mice, and promotes angiogenesis after hindlimb ischemia. Mice lacking ecSOD show reduction of H(2)O(2) in non-ischemic and ischemic limbs. In vitro, overexpression of ecSOD, but not ecSOD-DeltaHBD, in cultured medium in ECs enhances VEGF-induced tyrosine phosphorylation of VEGFR2 (VEGFR2-pY), which is prevented by short-term pretreatment with catalase that scavenges extracellular H(2)O(2). Either exogenous H(2)O(2) (<500 microM), which is diffusible, or nitric oxide donor has no effect on VEGF-induced VEGFR2-pY. These suggest that ecSOD binding to ECs via HBD is required for localized generation of extracellular H(2)O(2) to regulate VEGFR2-pY. Mechanistically, VEGF-induced VEGFR2-pY in caveolae/lipid rafts, but non-lipid rafts, is enhanced by ecSOD, which localizes at lipid rafts via HBD. One of the targets of ROS is protein tyrosine phosphatases (PTPs). ecSOD induces oxidation and inactivation of both PTP1B and DEP1, which negatively regulates VEGFR2-pY, in caveolae/lipid rafts, but not non-lipid rafts. Disruption of caveolae/lipid rafts, or PTPs inhibitor orthovanadate, or siRNAs for PTP1B and DEP1 enhances VEGF-induced VEGFR2-pY, which prevents ecSOD-induced effect. Functionally, ecSOD promotes VEGF-stimulated EC migration and proliferation. In summary, extracellular H(2)O(2) generated by ecSOD localized at caveolae/lipid rafts via HBD promotes VEGFR2 signaling via oxidative inactivation of PTPs in these microdomains. Thus, ecSOD is a potential therapeutic target for angiogenesis-dependent cardiovascular diseases.
    PLoS ONE 04/2010; 5(4):e10189. DOI:10.1371/journal.pone.0010189 · 3.23 Impact Factor
Show more