Article

Expression of human snRNA genes from beginning to end

Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, UK.
Biochemical Society Transactions (Impact Factor: 3.24). 08/2008; 36(Pt 4):590-4. DOI: 10.1042/BST0360590
Source: PubMed

ABSTRACT In addition to protein-coding genes, mammalian pol II (RNA polymerase II) transcribes independent genes for some non-coding RNAs, including the spliceosomal U1 and U2 snRNAs (small nuclear RNAs). snRNA genes differ from protein-coding genes in several key respects and some of the mechanisms involved in expression are gene-type-specific. For example, snRNA gene promoters contain an essential PSE (proximal sequence element) unique to these genes, the RNA-encoding regions contain no introns, elongation of transcription is P-TEFb (positive transcription elongation factor b)-independent and RNA 3'-end formation is directed by a 3'-box rather than a cleavage and polyadenylation signal. However, the CTD (C-terminal domain) of pol II closely couples transcription with RNA 5' and 3' processing in expression of both gene types. Recently, it was shown that snRNA promoter-specific recognition of the 3'-box RNA processing signal requires a novel phosphorylation mark on the pol II CTD. This new mark plays a critical role in the recruitment of the snRNA gene-specific RNA-processing complex, Integrator. These new findings provide the first example of a phosphorylation mark on the CTD heptapeptide that can be read in a gene-type-specific manner, reinforcing the notion of a CTD code. Here, we review the control of expression of snRNA genes from initiation to termination of transcription.

2 Bookmarks
 · 
195 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Exon-specific U1 snRNAs (ExSpe U1s) are modified U1 snRNAs that interact with intronic sequences downstream of the 5' splice site (ss) by complementarity. This process restores exon skipping caused by different types of mutation. We have investigated the molecular mechanism and activity of these molecules in spinal muscular atrophy (SMA), a genetic neuromuscular disease where a silent exonic transition on the survival motor neuron 2 (SMN2) leads to exon 7 (E7) skipping. By using different cellular models, we show that a single chromosome-integrated copy of ExSpe U1 induced a significant correction of endogenous SMN2 E7 splicing and resulted in the restoration of the corresponding SMN protein levels. Interestingly, the analysis of pre-mRNA transcript abundance and decay showed that ExSpe U1s promote E7 inclusion and stabilizes the SMN pre-mRNA intermediate. This selective effect on pre-mRNA stability resulted in higher levels of SMN mRNAs in comparison with those after treatment with an antisense oligonucleotide (AON) that targets corresponding intronic sequences. In mice harboring the SMN2 transgene, AAV-mediated delivery of ExSpe U1 increased E7 inclusion in brain, heart, liver, kidney, and skeletal muscle. The positive effect of ExSpe U1s on SMN pre-mRNA processing highlights their therapeutic potential in SMA and in other pathologies caused by exon-skipping mutations. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
    The American Journal of Human Genetics 12/2014; DOI:10.1016/j.ajhg.2014.12.009 · 11.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Regulation of transcription elongation by RNA polymerase II (Pol II) is a key regulatory step in gene transcription. Recently, the little elongation complex (LEC)-which contains the transcription elongation factor ELL/EAF-was found to be required for the transcription of Pol II-dependent small nuclear RNA (snRNA) genes. Here we show that the human Mediator subunit MED26 plays a role in the recruitment of LEC to a subset of snRNA genes through direct interaction of EAF and the N-terminal domain (NTD) of MED26. Loss of MED26 in cells decreases the occupancy of LEC at a subset of snRNA genes and results in a reduction in their transcription. Our results suggest that the MED26-NTD functions as a molecular switch in the exchange of TBP-associated factor 7 (TAF7) for LEC to facilitate the transition from initiation to elongation during transcription of a subset of snRNA genes.
    Nature Communications 01/2015; 6:5941. DOI:10.1038/ncomms6941 · 10.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The c.891C>T synonymous transition in SPINK5 induces exon 11 (E11) skipping and causes Netherton syndrome (NS). Using a specific RNA-protein interaction assay followed by mass spectrometry analysis along with silencing and over-expression of splicing factors, we showed that this mutation affects an exonic bi-functional splicing regulatory element (Bi-SRE) composed by two partially overlapping silencer and enhancer sequences, recognized by hnRNPA1 and Tra2β splicing factors, respectively. The C-to-T substitution concomitantly increases hnRNPA1 and weakens Tra2β binding sites, leading to pathological E11 skipping. In hybrid minigenes, Exon-specific U1 small nuclear RNAs (ExSpe U1s) that target by complementarity intronic sequences downstream of the donor splice site rescued the E11 skipping defect caused by the c.891C>T mutation. ExSpe U1 lentiviral-mediated transduction of primary NS keratinocytes from a patient bearing the mutation recovered the correct full-length SPINK5 mRNA and the corresponding functional LEKTI protein in a dose dependent manner. This study documents the reliability of a mutation-specific, ExSpe U1-based, splicing therapy for a relatively large subset of European NS patients. Usage of ExSpe U1 may represent a general approach for correction of splicing defects affecting skin disease genes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
    Human Mutation 02/2015; DOI:10.1002/humu.22762 · 5.05 Impact Factor

Full-text (2 Sources)

Download
23 Downloads
Available from
Jun 10, 2014