Article

Mutations in the nervous system--specific HSN2 exon of WNK1 cause hereditary sensory neuropathy type II.

Centre of Excellence in Neuromics, University of Montreal, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.
Journal of Clinical Investigation (Impact Factor: 13.77). 07/2008; 118(7):2496-505. DOI: 10.1172/JCI34088
Source: PubMed

ABSTRACT Hereditary sensory and autonomic neuropathy type II (HSANII) is an early-onset autosomal recessive disorder characterized by loss of perception to pain, touch, and heat due to a loss of peripheral sensory nerves. Mutations in hereditary sensory neuropathy type II (HSN2), a single-exon ORF originally identified in affected families in Quebec and Newfoundland, Canada, were found to cause HSANII. We report here that HSN2 is a nervous system-specific exon of the with-no-lysine(K)-1 (WNK1) gene. WNK1 mutations have previously been reported to cause pseudohypoaldosteronism type II but have not been studied in the nervous system. Given the high degree of conservation of WNK1 between mice and humans, we characterized the structure and expression patterns of this isoform in mice. Immunodetections indicated that this Wnk1/Hsn2 isoform was expressed in sensory components of the peripheral nervous system and CNS associated with relaying sensory and nociceptive signals, including satellite cells, Schwann cells, and sensory neurons. We also demonstrate that the novel protein product of Wnk1/Hsn2 was more abundant in sensory neurons than motor neurons. The characteristics of WNK1/HSN2 point to a possible role for this gene in the peripheral sensory perception deficits characterizing HSANII.

0 Bookmarks
 · 
181 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: WNK1 (with no lysine (K)) is a widely expressed serine/threonine protein kinase. The role of this kinase was first described in the kidney where it dynamically controls ion channels that regulate changes in cell volume. WNK1, through intermediates oxidative stress-responsive kinase-1 (OSR1) and STE20/SPS1-related proline/alanine-rich kinase (SPAK), phosphorylates the inwardly directed Na(+)-K+-Cl(-)--cotransporter 1 (NKCC1) and the outwardly directed K(+)-Cl(-)-cotransporter 2 (KCC2), activating and deactivating these channels, respectively. WNK1, NKCC1 and KCC2 are also expressed in the central nervous system (CNS). Growing evidence implicates WNK1 playing a critical role in pathologic nervous system signaling where changes in intracellular ion concentration in response to γ-aminobutyric-acid (GABA) can activate otherwise silent pathways. This review will focus on current research about WNK1, its downstream effectors and role in GABA signaling. Future perspectives include investigating WNK1 expression in the CNS after spinal cord injury (SCI), where altered neuronal signaling could underlie pathological states such as neuropathic pain (NP).
    Annals of Neurosciences 04/2011; 18(2):70-75. DOI:10.5214/ans.0972.7531.1118212
    This article is viewable in ResearchGate's enriched format
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we analyzed the global gene expression profiles in the subcutaneous fat (SAT) of Jinhua pigs and Landrace pigs at 90 d. Several genes were significantly highly expressed in Jinhua pigs, including genes encoding the rate limiting enzymes in the TCA cycle, fatty acid activation, fatty acid synthesis and triglyceride synthesis. We identified a novel gene tagged by the EST sequences as public No. BF702245.1, which was named porcine FAM134B (pFAM134B) and the pFAM134B mRNA levels of SAT was significantly higher in Jinhua pigs than that in Landrace pigs at 90 d (P < 0.01). Then the effects of pFAM134B on lipid accumulation were investigated by using RNAi and gene overexpression in the subcutaneous adipocytes. The results showed that pFAM134B played a significant positive role in regulating lipid deposition by increasing the mRNA levels of PPAR gamma, lipogenic genes fatty acid synthetase (FAS) and acetyl-CoA carboxylase (ACC) (P < 0.01) and reducing the mRNA levels of adipose triglyceride lipase (ATGL) and lipase, hormone-sensitive (HSL) (P < 0.01). This study implied that pFAM134B might be a positive factor in lipid deposition, providing insight into the control of fat accumulation and lipid-related disorders.
    Biochemical and Biophysical Research Communications 10/2014; 454(4). DOI:10.1016/j.bbrc.2014.10.117 · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Various neurological and psychiatric manifestations have been recorded in children with adrenal disorders. Based on literature review and on personal case-studies and case-series we focused on the pathophysiological and clinical implications of glucocorticoid-related, mineralcorticoid-related, and catecholamine-related paediatric nervous system involvement. Childhood Cushing syndrome can be associated with long-lasting cognitive deficits and abnormal behaviour, even after resolution of the hypercortisolism. Exposure to excessive replacement of exogenous glucocorticoids in the paediatric age group (e.g., during treatments for adrenal insufficiency) has been reported with neurological and magnetic resonance imaging (MRI) abnormalities (e.g., delayed myelination and brain atrophy) due to potential corticosteroid-related myelin damage in the developing brain and the possible impairment of limbic system ontogenesis. Idiopathic intracranial hypertension (IIH), a disorder of unclear pathophysiology characterised by increased cerebrospinal fluid (CSF) pressure, has been described in children with hypercortisolism, adrenal insufficiency, and hyperaldosteronism, reflecting the potential underlying involvement of the adrenal-brain axis in the regulation of CSF pressure homeostasis. Arterial hypertension caused by paediatric adenomas or tumours of the adrenal cortex or medulla has been associated with various hypertension-related neurological manifestations. The development and maturation of the central nervous system (CNS) through childhood is tightly regulated by intrinsic, paracrine, endocrine, and external modulators, and perturbations in any of these factors, including those related to adrenal hormone imbalance, could result in consequences that affect the structure and function of the paediatric brain. Animal experiments and clinical studies demonstrated that the developing (i.e., paediatric) CNS seems to be particularly vulnerable to alterations induced by adrenal disorders and/or supraphysiological doses of corticosteroids. Physicians should be aware of potential neurological manifestations in children with adrenal dysfunction to achieve better prevention and timely diagnosis and treatment of these disorders. Further studies are needed to explore the potential neurological, cognitive, and psychiatric long-term consequences of high doses of prolonged corticosteroid administration in childhood.
    International Journal of Endocrinology 09/2014; 2014:282489. DOI:10.1155/2014/282489 · 1.52 Impact Factor
    This article is viewable in ResearchGate's enriched format

Full-text (2 Sources)

Download
70 Downloads
Available from
May 27, 2014