Article

Provenance in neuroimaging.

Laboratory of Neuro Imaging (LONI), Department of Neurology, University of California Los Angeles School of Medicine, 635 Charles E. Young Drive South, Suite 225, Los Angeles, CA 90095-7334, USA.
NeuroImage (Impact Factor: 6.13). 08/2008; 42(1):178-95. DOI: 10.1016/j.neuroimage.2008.04.186
Source: PubMed

ABSTRACT Provenance, the description of the history of a set of data, has grown more important with the proliferation of research consortia-related efforts in neuroimaging. Knowledge about the origin and history of an image is crucial for establishing data and results quality; detailed information about how it was processed, including the specific software routines and operating systems that were used, is necessary for proper interpretation, high fidelity replication and re-use. We have drafted a mechanism for describing provenance in a simple and easy to use environment, alleviating the burden of documentation from the user while still providing a rich description of an image's provenance. This combination of ease of use and highly descriptive metadata should greatly facilitate the collection of provenance and subsequent sharing of data.

0 Followers
 · 
74 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biomedical imaging research increasingly involves acquiring, managing and processing large amounts of distributed imaging data. Integrated systems that combine data, meta-data and workflows are crucial for realising the opportunities presented by advances in imaging facilities. This paper describes the design, implementation and operation of a multi-modality research imaging data management system that manages imaging data obtained from biomedical imaging scanners operated at Monash Biomedical Imaging (MBI), Monash University in Melbourne, Australia. In addition to Digital Imaging and Communications in Medicine (DICOM) images, raw data and non-DICOM biomedical data can be archived and distributed by the system. Imaging data are annotated with meta-data according to a study-centric data model and, therefore, scientific users can find, download and process data easily. The research imaging data management system ensures long-term usability, integrity inter-operability and integration of large imaging data. Research users can securely browse and download stored images and data, and upload processed data via subject-oriented informatics frameworks including the Distributed and Reflective Informatics System (DaRIS), and the Extensible Neuroimaging Archive Toolkit (XNAT).
    01/2015; 3(Suppl 1 HISA Big Data in Biomedicine and Healthcare 2013 Con):S6. DOI:10.1186/2047-2501-3-S1-S6
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the last decade, major advances have been made in the availability of shared neuroimaging data, such that there are more than 8,000 shared MRI (magnetic resonance imaging) data sets available online. Here we outline the state of data sharing for task-based functional MRI (fMRI) data, with a focus on various forms of data and their relative utility for subsequent analyses. We also discuss challenges to the future success of data sharing and highlight the ethical argument that data sharing may be necessary to maximize the contribution of human subjects.
    Nature Neuroscience 10/2014; 17(11-11):1510-1517. DOI:10.1038/nn.3818 · 14.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Under the umbrella of the National Database for Clinical Trials (NDCT) related to mental illnesses, the National Database for Autism Research (NDAR) seeks to gather, curate, and make openly available neuroimaging data from NIH-funded studies of autism spectrum disorder (ASD). NDAR has recently made its database accessible through the LONI Pipeline workflow design and execution environment to enable large-scale analyses of cortical architecture and function via local, cluster, or "cloud"-based computing resources. This presents a unique opportunity to overcome many of the customary limitations to fostering biomedical neuroimaging as a science of discovery. Providing open access to primary neuroimaging data, workflow methods, and high-performance computing will increase uniformity in data collection protocols, encourage greater reliability of published data, results replication, and broaden the range of researchers now able to perform larger studies than ever before. To illustrate the use of NDAR and LONI Pipeline for performing several commonly performed neuroimaging processing steps and analyses, this paper presents example workflows useful for ASD neuroimaging researchers seeking to begin using this valuable combination of online data and computational resources. We discuss the utility of such database and workflow processing interactivity as a motivation for the sharing of additional primary data in ASD research and elsewhere.
    Brain Imaging and Behavior 02/2015; 9(1). DOI:10.1007/s11682-015-9354-z · 3.39 Impact Factor

Preview

Download
0 Downloads
Available from