Wilhelm CJ, Mitchell SH. Rats bred for high alcohol drinking are more sensitive to delayed and probabilistic outcomes. Genes Brain Behav 7: 705-713

Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
Genes Brain and Behavior (Impact Factor: 3.66). 10/2008; 7(7):705-13. DOI: 10.1111/j.1601-183X.2008.00406.x
Source: PubMed

ABSTRACT Alcoholics and heavy drinkers score higher on measures of impulsivity than nonalcoholics and light drinkers. This may be because of factors that predate drug exposure (e.g. genetics). This study examined the role of genetics by comparing impulsivity measures in ethanol-naive rats selectively bred based on their high [high alcohol drinking (HAD)] or low [low alcohol drinking (LAD)] consumption of ethanol. Replicates 1 and 2 of the HAD and LAD rats, developed by the University of Indiana Alcohol Research Center, completed two different discounting tasks. Delay discounting examines sensitivity to rewards that are delayed in time and is commonly used to assess 'choice' impulsivity. Probability discounting examines sensitivity to the uncertain delivery of rewards and has been used to assess risk taking and risk assessment. High alcohol drinking rats discounted delayed and probabilistic rewards more steeply than LAD rats. Discount rates associated with probabilistic and delayed rewards were weakly correlated, while bias was strongly correlated with discount rate in both delay and probability discounting. The results suggest that selective breeding for high alcohol consumption selects for animals that are more sensitive to delayed and probabilistic outcomes. Sensitivity to delayed or probabilistic outcomes may be predictive of future drinking in genetically predisposed individuals.

16 Reads
  • Source
    • ", in a direction similar to that reported by Poulos et al . ; Beckwith & Czachowski , 2014 ; Oberlin & Grahame , 2009 ; Wilhelm & Mitchell , 2008 ) , some demonstrates no relation ( Beckwith & Czachowski ) , or the opposite relation ( Wilhelm , Reeves , Phillips , & Mitchell , 2007 ) between these variables . These inconsistencies diminish the utility of examining alcohol consumption in rodent models when attempting to under - stand the relation between experimental manipulation of impulsive choice and subse - quent drug self - administration . "
    [Show abstract] [Hide abstract]
    ABSTRACT: In a prior study (Stein et al., 2013), we reported that rats pre-exposed to delayed rewards made fewer impulsive choices, but consumed more alcohol (12% wt/vol), than rats pre-exposed to immediate rewards. To understand the mechanisms that produced these findings, we again pre-exposed rats to either delayed (17.5 s; n = 32) or immediate (n = 30) rewards. In posttests, delay-exposed rats made significantly fewer impulsive choices at 15- and 30-s delays to a larger, later food reward than the immediacy-exposed comparison group. Behavior in an open-field test provided little evidence of differential stress exposure between groups. Further, consumption of either 12% alcohol or isocaloric sucrose in subsequent tests did not differ between groups. Because Stein et al. introduced alcohol concentration gradually (3-12%), we speculate that their group differences in 12% alcohol consumption were not determined by alcohol's pharmacological effects, but by another variable (e.g., taste) that was preserved as an artifact from lower concentrations. We conclude that pre-exposure to delayed rewards generalizes beyond the pre-exposure delay; however, this same experimental variable does not robustly influence alcohol consumption. © Society for the Experimental Analysis of Behavior.
    Journal of the Experimental Analysis of Behavior 02/2015; 103(1). DOI:10.1002/jeab.116 · 1.87 Impact Factor
  • Source
    • "Evidence of a genetic association between impulsive choice and sensitivity to both sweet-taste and drug-induced reward (Mitchell, 2011; Carroll et al., 2013) provides further support for common neurobiological mechanisms underlying impulsive choice and reward sensitivity. For instance, animals genetically bred to be high alcohol preferring consume greater amounts of saccharin (Sinclair et al., 1992; Stewart et al., 1994) and display steeper delay discounting than do low alcohol preferring animals (Wilhelm and Mitchell, 2008; Oberlin and Grahame, 2009). This genetic link is further supported by human studies that report an association between family history of alcoholism and both sweet taste liking and impulsive choice. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Evidence from both human and animal studies suggests that sensitivity to rewarding stimuli is positively associated with impulsive behaviors, including both impulsive decision making and inhibitory control. The current study examined associations between the hedonic value of a sweet taste and two forms of impulsivity (impulsive choice and impulsive action) in healthy young adults (N = 100). Participants completed a sweet taste test in which they rated their liking of various sweetness concentrations. Subjects also completed measures of impulsive choice (delay discounting), and impulsive action (go/no-go task). Subjects who discounted more steeply (i.e., greater impulsive choice) liked the high sweetness concentration solutions more. By contrast, sweet liking was not related to impulsive action. These findings indicate that impulsive choice may be associated with heightened sensitivity to the hedonic value of a rewarding stimulus, and that these constructs might share common underlying neurobiological mechanisms.
    Frontiers in Behavioral Neuroscience 06/2014; 8:228. DOI:10.3389/fnbeh.2014.00228 · 3.27 Impact Factor
  • Source
    • "Many operant paradigms have been developed to study tolerance to uncertainty and/or gambling proneness in animal models (Mobini et al., 2000; Cardinal and Howes, 2005; Adriani et al., 2006; Wilhelm and Mitchell, 2008; Winstanley et al., 2011). Specifically, by exploiting uncertainty of reward delivery, these tasks allow to probe individual (in)tolerance to frustration, linked to missing an anticipated reward (i.e., the “loss”). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The search for neuronal and psychological underpinnings of pathological gambling in humans would benefit from investigating related phenomena also outside of our species. In this paper, we present a survey of studies in three widely different populations of agents, namely rodents, non-human primates, and robots. Each of these populations offers valuable and complementary insights on the topic, as the literature demonstrates. In addition, we highlight the deep and complex connections between relevant results across these different areas of research (i.e., cognitive and computational neuroscience, neuroethology, cognitive primatology, neuropsychiatry, evolutionary robotics), to make the case for a greater degree of methodological integration in future studies on pathological gambling.
    Frontiers in Behavioral Neuroscience 02/2014; 8:33. DOI:10.3389/fnbeh.2014.00033 · 3.27 Impact Factor
Show more