Article

Rats bred for high alcohol drinking are more sensitive to delayed and probabilistic outcomes.

Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
Genes Brain and Behavior (Impact Factor: 3.51). 10/2008; 7(7):705-13. DOI: 10.1111/j.1601-183X.2008.00406.x
Source: PubMed

ABSTRACT Alcoholics and heavy drinkers score higher on measures of impulsivity than nonalcoholics and light drinkers. This may be because of factors that predate drug exposure (e.g. genetics). This study examined the role of genetics by comparing impulsivity measures in ethanol-naive rats selectively bred based on their high [high alcohol drinking (HAD)] or low [low alcohol drinking (LAD)] consumption of ethanol. Replicates 1 and 2 of the HAD and LAD rats, developed by the University of Indiana Alcohol Research Center, completed two different discounting tasks. Delay discounting examines sensitivity to rewards that are delayed in time and is commonly used to assess 'choice' impulsivity. Probability discounting examines sensitivity to the uncertain delivery of rewards and has been used to assess risk taking and risk assessment. High alcohol drinking rats discounted delayed and probabilistic rewards more steeply than LAD rats. Discount rates associated with probabilistic and delayed rewards were weakly correlated, while bias was strongly correlated with discount rate in both delay and probability discounting. The results suggest that selective breeding for high alcohol consumption selects for animals that are more sensitive to delayed and probabilistic outcomes. Sensitivity to delayed or probabilistic outcomes may be predictive of future drinking in genetically predisposed individuals.

Download full-text

Full-text

Available from: Suzanne H Mitchell, Jul 04, 2015
0 Followers
 · 
71 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In a prior study (Stein et al., 2013), we reported that rats pre-exposed to delayed rewards made fewer impulsive choices, but consumed more alcohol (12% wt/vol), than rats pre-exposed to immediate rewards. To understand the mechanisms that produced these findings, we again pre-exposed rats to either delayed (17.5 s; n = 32) or immediate (n = 30) rewards. In posttests, delay-exposed rats made significantly fewer impulsive choices at 15- and 30-s delays to a larger, later food reward than the immediacy-exposed comparison group. Behavior in an open-field test provided little evidence of differential stress exposure between groups. Further, consumption of either 12% alcohol or isocaloric sucrose in subsequent tests did not differ between groups. Because Stein et al. introduced alcohol concentration gradually (3-12%), we speculate that their group differences in 12% alcohol consumption were not determined by alcohol's pharmacological effects, but by another variable (e.g., taste) that was preserved as an artifact from lower concentrations. We conclude that pre-exposure to delayed rewards generalizes beyond the pre-exposure delay; however, this same experimental variable does not robustly influence alcohol consumption. © Society for the Experimental Analysis of Behavior.
    Journal of the Experimental Analysis of Behavior 01/2015; 103(1). DOI:10.1002/jeab.116 · 1.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Evidence from both human and animal studies suggests that sensitivity to rewarding stimuli is positively associated with impulsive behaviors, including both impulsive decision making and inhibitory control. The current study examined associations between the hedonic value of a sweet taste and two forms of impulsivity (impulsive choice and impulsive action) in healthy young adults (N = 100). Participants completed a sweet taste test in which they rated their liking of various sweetness concentrations. Subjects also completed measures of impulsive choice (delay discounting), and impulsive action (go/no-go task). Subjects who discounted more steeply (i.e., greater impulsive choice) liked the high sweetness concentration solutions more. By contrast, sweet liking was not related to impulsive action. These findings indicate that impulsive choice may be associated with heightened sensitivity to the hedonic value of a rewarding stimulus, and that these constructs might share common underlying neurobiological mechanisms.
    Frontiers in Behavioral Neuroscience 06/2014; 8:228. DOI:10.3389/fnbeh.2014.00228 · 4.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Deficits in executive control have frequently been associated with alcohol use disorder. Here we investigated to what extent pre-existing genetically encoded levels of impulsive/inattentive behavior associate with motivation to take alcohol and vulnerability to cue-induced reinstatement of alcohol seeking in an operant self-administration paradigm. We took advantage of BXD16, a recombinant inbred strain previously shown to have enhanced impulsivity and poor attentional control. We compared BXD16 with C57BL/6J mice in a simple choice reaction time task (SCRTT) and confirmed its impulsive/inattentive phenotype. BXD16 mice were less active in a novel open field (OF), and were equally active in an automated home cage environment, showing that increased impulsive responding of BXD16 mice could not be explained by enhanced general activity compared to C57BL/6J mice. After training in a sucrose/alcohol fading self-administration procedure, BXD16 showed increased motivation to earn 10% alcohol solution, both under fixed ratio (FR1) and progressive ratio (PR2) schedules of reinforcement. Responding on the active lever readily decreased during extinction training with no apparent differences between strains. However, upon re-exposure to alcohol-associated cues, alcohol seeking was reinstated to a larger extent in BXD16 than in C57BL/6J mice. Although further studies are needed to determine whether impulsivity/inattention and alcohol seeking depend on common or separate genetic loci, these data show that in mice enhanced impulsivity coincides with increased motivation to take alcohol, as well as relapse vulnerability.
    Frontiers in Behavioral Neuroscience 10/2013; 7:151. DOI:10.3389/fnbeh.2013.00151 · 4.16 Impact Factor